...
首页> 外文期刊>Biomedical materials >Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation
【24h】

Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation

机译:氧化镁纳米粒子加载的聚己内酯复合电纺纤维支架用于骨软组织工程应用:体外和体内评价

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of the present investigation was to assess the potential ofmagnesium oxide nanoparticle (MgONP)-loaded electrospun polycaprolactone (PCL) polymer composites as a bone-soft tissue engineering scaffold. MgONPs were synthesized using a hydroxide precipitation sol-gel method and characterized using field emission gun-scanning electronmicroscopy/energy-dispersive x-ray spectroscopy (FEG-SEM/EDS), field emission gun-transmission electron microscopy (FEG-TEM), andx-ray diffraction (XRD) analysis. PCL and MgO-PCL nanocomposite fibers were fabricated using electrospinning with trifluoroethanol as solvent at 19 kV applied voltage and 1.9 mlh(-1) flow rate as optimized process parameters, andwere characterized by FEG-TEM, FEG-SEM/EDS, XRD, and differential scanning calorimetry analyses. Characterization studies of as-synthesized nanoparticles revealed diffraction peaks indexed to various crystalline planes peculiar toMgOparticles with hexagonal and cubical shape, and 40-60 nmsize range. Significant improvement inmechanical properties (tensile strength and elastic modulus) of nanocomposites was observed as compared to neat polymer specimens (fourfold and threefold, respectively), due to uniform dispersion of nanofillers along the polymer fiber length. There was a remarkable bioactivity shown by nanocomposite scaffolds in immersion test, as indicated by formation of surface hydroxyapatite layer by the thirddayof incubation. MgO-loaded electrospun PCL mats showed enhanced in-vitro biological performancewith osteoblast-like MG-63 cells in terms of adhesion, proliferation, andmarked differentiation marker activity owing to greater surface roughness, nanotopography, and hydrophilicity facilitating higher protein adsorption. In-vivo subcutaneous implantation study in SpragueDawley rats revealed initial moderate inflammatory tissue response near implant site at the secondweektimepoint that subsided later (eighth week) with no adverse effect on vital organ functionalities as seen in histopathological analysis supported by serum biochemical and hematological parameterswhich did not deviate significantly from normal physiological range, indicating good biocompatibility in-vivo. Thus, MgO-PCL nanocomposite electrospun fibers have potential as an efficient scaffold material for bone-soft tissue engineering applications.
机译:本研究的目的是评估氧化铟型纳米粒子(MGONP)的潜在电荷的电纺多己内酯(PCL)聚合物复合材料作为骨软组织工程支架。使用氢氧化物沉淀溶胶 - 凝胶法合成MgOnps,并使用现场发射枪扫描电子镜/能量分散X射线光谱(FEG-SEM / EDS),现场发射枪传输电子显微镜(FEG-TEM),ANDX -Ray衍射(XRD)分析。使用静电素和MgO-PCL纳米复合纤维制备,用三氟乙醇,作为19kV施加电压的溶剂和1.9mLh(-1)流量,作为优化的工艺参数,并通过FEG-TEM,FEG-SEM / EDS,XRD表征,以及差分扫描量热法分析。用六角形和立方形状的各种晶体平面斑块分枝的衍射峰的表征研究显示了各种结晶平面的衍射峰,40-60nmsize范围。由于沿着聚合物纤维长度均匀分散,因此观察到纳米复合材料的显着改善的纳米复合材料的机械性能(抗拉强度和弹性模量),其沿着聚合物纤维长度均匀分散。浸入式试验中纳米复合支架显示出具有显着的生物活性,如通过第三天孵育的表面羟基磷灰石层所示。 MgO负载的Electrom ow PCL垫在粘附,增殖,和染色的分化标记活性方面显示出对体外的Mg-63细胞的体外生物学性能,由于更高的表面粗糙度,纳米发作和亲水性,促进了较高的蛋白质吸附。 Spraguedweyly大鼠的体内皮下植入研究揭示了植入部位的初始中度炎症组织反应,其在稍后(第八周)下降,没有对重要器官功能的不良反应,如血清生化和血液学参数支持的组织病理学分析中所见的那样从正常的生理范围偏离显着偏离,表明体内良好的生物相容性。因此,MgO-PCL纳米复合材料电纺纤维具有骨软组织工程应用的有效支架材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号