首页> 外文OA文献 >In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications
【2h】

In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications

机译:用于组织工程应用的冷冻凝胶化多孔壳聚糖复合支架的体外和体内降解研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tissue engineering approaches have been adapted to reconstruct and restore functionality of impaired tissue for decades. Porous biomimetic composite scaffolds of Chitosan (CH) with hydroxyapatite (HA) for bone regeneration have also been extensively studied in the past. These porous scaffolds play a critical role in providing successful regeneration by acting as a three-dimensional template for delivering nutrients and metabolites and the removal of waste by products. The aim of the current study was to investigate in-vitro and in-vivo degradation rates of porous freeze gelated chitosan (CH) and CH hydroxyapatite scaffolds by scanning electron microscopy (SEM) to observe for morphological changes, Fourier Transform Infrared Spectroscopy (FTIR) in conjunction with photo-acoustic sampling (PAS) accessory for the analysis of chemical changes, pH analysis and UV–Vis spectroscopy of degraded supernatant. SEM results showed significant alterations in the surface morphology. FTIR-PAS spectra showed changes in the finger print region and glycosidic bonds showed signs of breakage. pH values and UV–Vis spectroscopy of the degraded supernatant were indicative of CH bonds scission in neat samples. HA incorporated specimens showed more stability. Histological sections performed after in-vivo implantation also showed greater cellular infiltration and delayed degradation profiles by HA loaded samples. Within 30 days of implantation, neat CH scaffolds showed complete in-vivo biodegradation. The current findings show the advantage of adding hydroxyapatite to porous templates which enhances hard tissue regeneration. In addition, it allows easy and cost effective fabrication of bioactive composite scaffolds.
机译:组织工程方法已经适应了数十年的重建和恢复受损组织的功能的方法。过去也已经广泛研究了壳聚糖(CH)与羟基磷灰石(HA)的多孔仿生复合支架用于骨骼再生。这些多孔支架通过充当三维模板来传递营养物质和代谢产物并去除产品中的废物,在提供成功的再生中起关键作用。本研究的目的是通过扫描电子显微镜(SEM)研究多孔冷冻凝胶化壳聚糖(CH)和CH羟基磷灰石支架的体外和体内降解率,以观察形态变化,傅里叶变换红外光谱(FTIR)结合光声采样(PAS)附件,用于分析降解的上清液的化学变化,pH分析和UV-Vis光谱。 SEM结果表明表面形态发生了显着变化。 FTIR-PAS光谱显示出指纹区域的变化,糖苷键显示出断裂的迹象。降解的上清液的pH值和UV-Vis光谱表明纯样品中的CH键断裂。掺入HA的标本显示出更高的稳定性。体内植入后进行的组织学切片也显示出更高的细胞浸润性,并且HA加载的样品延迟了降解过程。植入后30天内,纯净的CH支架显示出了完整的体内生物降解。当前的发现表明向多孔模板中添加羟基磷灰石的优势,这可以增强硬组织的再生。另外,它允许容易且成本有效的生物活性复合支架的制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号