...
首页> 外文期刊>RSC Advances >Core-shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors
【24h】

Core-shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors

机译:高性能超级电容器的核 - 壳纳米球蛋白聚吡咯/石墨烯氧化物复合材料

获取原文
获取原文并翻译 | 示例

摘要

Novel core-shell polypyrrole/graphene oxide (PPy-GO) nanomaterials of uniform PPy nanospheres and GO have been synthesized by an in situ surface-initiated polymerization method. The morphology and structure of the core-shell PPy-GO composites were studied by means of techniques. Experimental results showed that PPy nanospheres with small nanospheres of only ~70 nm were uniformly grown on the GO sheets to form continuous 3D core-shell PPy-GO nanocomposites. The smaller size of PPy can not only be more beneficial to increasing the electrochemical performance, but can also reduce the ion diffusion path and make it a higher material for utilization. Moreover, the well-designed core-shell nanostructure and synergistic effects of PPy-GO composites can clearly lead to high rates of electrode reaction and good electrode/electrolyte contact areas. Meanwhile, its electrochemical performance was evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. The specific capacitance of the core-shell PPy-GO nanocomposites can reach up to 370 F g~(-1) at a current density of 0.5 A g~(-1) with a large mass loading of 8.0 mg cm~(-2) . It is noteworthy that the cycling stability of the PPy-GO electrode was improved significantly by the core-shell nanostructures, and showed excellent capacitance retention (91.2%) even after 4000 cycles, suggesting its attractive application in supercapacitors with improved performance.
机译:通过原位表面引发的聚合方法合成均匀PPY纳米球的新型核 - 壳聚吡咯/石墨烯氧化物(PPY-GO)纳米材料,并通过原位表面引发的聚合方法合成。通过技术研究了核心 - 壳PPY-GO复合材料的形态和结构。实验结果表明,仅在去板上均匀地生长具有小纳米球的PPY纳米球,以形成连续的3D核心壳PPY-GO纳米复合材料。较小的PPY尺寸不仅可以更有利于增加电化学性能,而且还可以减少离子扩散路径并使其成为更高的利用材料。此外,设计良好设计的核心壳纳米结构和PPY-GO复合材料的协同效应可以明显导致电极反应和良好的电极/电解质接触区域的高速率。同时,通过循环伏安法(CV),电镀电荷/放电(GCD)和电化学阻抗光谱(EIS)测试评估其电化学性能。核 - 壳PPY-GO纳米复合材料的特定电容可在0.5Ag〜(-1)的电流密度高达370°F G〜(-1),其大量负荷为8.0mg cm〜(-2 )。值得注意的是,通过核 - 壳纳米结构显着提高了PPY-GO电极的循环稳定性,并且即使在4000次循环之后,也显示出优异的电容保留(91.2%),表明其在超级电容器中具有改进的性能的吸引力。

著录项

  • 来源
    《RSC Advances 》 |2015年第111期| 共9页
  • 作者单位

    State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 PR China.;

    State Key Laboratory of Electrical Insulation and Power Equipment School of Electrical Engineering Xi'an Jiaotong University Xi'an 710049 PR China;

    State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 PR China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号