...
首页> 外文期刊>RSC Advances >A novel interfacial synthesis of MnO-NiO-reduced graphene oxide hybrid with enhanced pseudocapacitance performance
【24h】

A novel interfacial synthesis of MnO-NiO-reduced graphene oxide hybrid with enhanced pseudocapacitance performance

机译:具有增强的假偶联性能的新型界面合成MnO- Nio-氧化石墨烯杂交体

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We demonstrate a facile one-step interface approach to in situ grow MnO-NiO nanoparticles on reduced graphene oxide via a DMF-water double solvent system without any addition agent. The dispersed MnO-NiO nanoparticles provide high theoretical capacitance. The uniform growth and attachment of MnO-NiO nanoparticles on the graphene nanosheets offer greatly decreased contact resistance and effective charge transfer. Simultaneously, graphene plays an architecture support role to ensure stable structure. Electrochemical measurement results show that the MNG electrodes deliver a high specific capacitance of 813 F g(-1) at 0.5 A g(-1), excellent rate capability (80.56% retention at 4 A g(-1)) and good cycling stability. In the one-step interface approach, the excellent dissolving capacity of DMF allows inorganic salts directly used as reagents in organic phase instead of conventional organic reagents, which fundamentally reduces the internal resistances of the electrode active materials. By virtue of this significant expansion of reagent categories and the convenient experimental accessibility, this improved interface method might be a promising approach to develop other classes of hybrids based on graphene for electrochemical energy storage devices and readily to scale up.
机译:我们证明了通过DMF水双溶剂系统在石墨烯氧化物上原位生长MnO-NiO纳米颗粒的容易的一步界面方法,无需任何添加剂。分散的MnO-NiO纳米颗粒提供高理论电容。 MNO-NIO纳米粒子对石墨烯纳米液体的均匀生长和附着得出大大降低的接触电阻和有效的电荷转移。同时,Graphene起到架构支持角色,以确保稳定的结构。电化学测量结果表明,MNG电极以0.5Ag(-1),优异的速率能力(在4Ag(-1))和良好的循环稳定性(80.56%的保留)中提供高比电容。 。在一步界面方法中,DMF的优异溶解能力允许直接用作有机相中试剂而不是常规有机试剂的无机盐,这从根本上降低了电极活性材料的内部电阻。由于这种重大扩大了试剂类别和方便的实验可访问性,这种改进的界面方法可能是一种有望的方法,可以是基于石墨烯的开发其他类别的混合动力车,并且容易扩大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号