首页> 外文期刊>RSC Advances >Dynamic stability characteristics of fluid flow in CO2 miscible displacements in porous media
【24h】

Dynamic stability characteristics of fluid flow in CO2 miscible displacements in porous media

机译:多孔介质中二氧化碳混溶性位移流体流动的动态稳定性特征

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamic characteristics of fluid flow are important in miscible displacement processes in carbon dioxide enhanced oil recovery (CO2-EOR) projects. And the stability of the in situ mixing zone greatly influences the oil recovery factor, which deserves further research. We investigated CO2 miscible displacement processes using magnetic resonance imaging (MRI) apparatus. The CO2 miscible displacement flows were performed at a low injection rate of 0.1 ml min(-1) with reservoir conditions of 8.5 to 9.5 MPa and 37.8 degrees C. The oil saturation evolution, the length of the in situ mixing zone, and the mixing-frontal velocity and CO2-frontal velocity were quantified. The experimental results showed that the residual oil saturation decreased with pressure and the mixing zone length was independent of pressure. The mixing-frontal velocity and the CO2-frontal velocity were nearly the same and increased with pressure. The critical velocity of the CO2/n-decane (CO2/nC(10)) system was 1.105 x 10(-5) m s(-1). Although the whole mixing zone length had no obvious change with pressure, a higher pressure compressed the mixing zone and led to an unstable mixing front above the critical velocity. The longitudinal dispersion coefficient was calculated by fitting the experimental data with an error function, which had no obvious change with pressure. Additionally, a three-dimensional lattice-Boltzmann method (LBM) was used to simulate pore-scale miscible fluid flows in upward vertical displacements. A front fingering occurred at a low kinematic viscosity ratio (nu(Co2) : nu(o) = 1 : 1). At a large kinematic viscosity ratio (nu(Co2) : nu(o) = 1 : 15), the high kinematic viscous oil restrained the buoyancy of supercritical CO2, but also impeded the displacement with a pore-scale backflow which might lead to a low oil recovery factor.
机译:流体流动的动态特性在二氧化碳增强的采油(CO2-EOR)项目中的混溶性位移过程中是重要的。并且原位混合区的稳定性极大地影响了吸油因子,这应该得到进一步的研究。我们使用磁共振成像(MRI)装置研究了CO2混溶性位移过程。 CO 2混溶性位移流量以0.1ml min(-1)的低注射速率,储层条件为8.5至9.5mPa和37.8℃。油饱和速度,原位混合区的长度和混合 - 量化速度和CO2-正速度。实验结果表明,残留的油饱和度随压力而降低,混合区长度与压力无关。混合 - 正速度和CO2-正速度几乎相同并随压力而增加。 CO 2 / N-癸烷(CO2 / NC(10))系统的临界速度为1.105×10(-5)M s(-1)。尽管整个混合区长度没有明显的压力变化,但是更高的压力压缩混合区,并导致高于临界速度的不稳定混合前面。通过用误差函数拟合实验数据来计算纵向分散系数,这与压力没有明显变化。另外,使用三维格子-Boltzmann方法(LBM)来模拟向上垂直位移的孔径混溶性流体流动。前铰接发生在低运动粘度比(NU(CO2):NU(O)= 1:1)。在大型运动粘度比(NU(CO2):NU(O)= 1:15)中,高运动粘性油抑制了超临界CO2的浮力,但也阻碍了孔隙率回流的位移,这可能导致a低油回收率。

著录项

  • 来源
    《RSC Advances》 |2015年第44期|共15页
  • 作者单位

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Northeast Petr Univ Civil Engn Coll Daqing 163318 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

    Dalian Univ Technol Minist Educ Key Lab Ocean Energy Utilizat &

    Energy Conservat Dalian 116024 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号