首页> 外文期刊>BioSystems >A theoretical steady state analysis indicates that induction of Escherichia coli glnALG operon can display all-or-none behavior
【24h】

A theoretical steady state analysis indicates that induction of Escherichia coli glnALG operon can display all-or-none behavior

机译:理论稳态分析表明,大肠杆菌glnALG操纵子的诱导可以显示全有或全无的行为

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The nitrogen starvation response in Escherichia coli is characterized by the enhanced expression of Ntr regulon, comprising hundreds of genes including the one coding for nitrogen-assimilating glutamine synthetase (GS) enzyme. The biosynthesis and activity of GS is regulated mainly by nitrogen and carbon levels in the cell and monitored by three functionally separable interconnected modules. Here, we present the steady-state modular analysis of this intricate network made up of a GS bicyclic closed-loop cascade, a NRII–NRI two-component system, and an autoregulated glnALG operon encoding genes for GS, NRII, and NRI. Our simulation results indicate that the transcriptional output of glnALG operon is discrete and switch-like, whereas the activation of transcription factor NRI is graded, and the inactivation of GS is moderately ultrasensitive to input stimulus glutamine. The autoregulation of the NRII–NRI two-component system was found to be essential for the all-or-none induction of the glnALG operon. Furthermore, we show that the autoregulated two-component system modulates the total active GS by delineating the GS activity from its biosynthetic regulation. Our analysis indicates that the exclusive relationship between GS activity and its synthesis is brought about by the autoregulated two-component system. The modularity of the network endows the system to respond differently to nitrogen depending on the carbon status of the cell. Through a system-level quantification, we conclude that the discrete switch-like transcriptional response of the E. coli glnALG operon to nutrient starvation prevents the premature initiation of transcription and may represent the desperate attempt by the cell to survive in limiting conditions.
机译:大肠杆菌中的氮饥饿反应以Ntr regulon的表达增强为特征,Ntr regulon包含数百个基因,其中包括一个编码氮同化谷氨酰胺合成酶(GS)酶的基因。 GS的生物合成和活性主要受细胞中氮和碳水平的调节,并由三个功能上可分离的互连模块进行监测。在这里,我们介绍了由GS双环闭环级联,NRII-NRI两组分系统以及GS,NRII和NRI的自动调节glnALG操纵子编码基因组成的复杂网络的稳态模块分析。我们的模拟结果表明,glnALG操纵子的转录输出是离散的和开关状的,而转录因子NRI的激活是分级的,而GS的失活对输入的刺激谷氨酰胺具有中等的超敏感性。发现NRII-NRI两组分系统的自动调节对于glnALG操纵子的全有或全无诱导至关重要。此外,我们表明自动调节的两组分系统通过从其生物合成调节中勾勒出GS活性来调节总活性GS。我们的分析表明,GS活性与其合成之间的排他关系是由自动调节的两组分系统带来的。网络的模块化使系统能够根据电池的碳状态对氮做出不同的响应。通过系统级的定量,我们得出结论,大肠杆菌glnALG操纵子对营养饥饿的离散开关样转录反应可防止转录的过早启动,并可能代表细胞在有限条件下生存的绝望尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号