...
首页> 外文期刊>Biochimica et biophysica acta. Molecular cell research >A biomechanical perspective on stress fiber structure and function
【24h】

A biomechanical perspective on stress fiber structure and function

机译:应力纤维结构和功能的生物力学观点

获取原文
获取原文并翻译 | 示例

摘要

Stress fibers are actomyosin-based bundles whose structural and contractile properties underlie numerous cellular processes including adhesion, motility and mechanosensing. Recent advances in high-resolution live-cell imaging and single-cell force measurement have dramatically sharpened our understanding of the assembly, connectivity, and evolution of various specialized stress fiber subpopulations. This in turn has motivated interest in understanding how individual stress fibers generate tension and support cellular structure and force generation. In this review, we discuss approaches for measuring the mechanical properties of single stress fibers. We begin by discussing studies conducted in cell-free settings, including strategies based on isolation of intact stress fibers and reconstitution of stress fiber-like structures from purified components. We then discuss measurements obtained in living cells based both on inference of stress fiber properties from whole-cell mechanical measurements (e.g., atomic force microscopy) and on direct interrogation of single stress fibers (e.g., subcellular laser nanosurgery). We conclude by reviewing various mathematical models of stress fiber function that have been developed based on these experimental measurements. An important future challenge in this area will be the integration of these sophisticated biophysical measurements with the field's increasingly detailed molecular understanding of stress fiber assembly, dynamics, and signal transduction. This article is part of a Special Issue entitled: Mechanobiology. (C) 2015 Elsevier B.V. All rights reserved.
机译:应力纤维是基于肌动球蛋白的束,其结构和收缩特性是众多细胞过程(包括粘附,运动性和机械传感)的基础。高分辨率活细胞成像和单细胞力测量的最新进展极大地加深了我们对各种特殊应力纤维亚群的组装,连通性和进化的了解。反过来,这激发了人们对理解单个应力纤维如何产生张力并支持细胞结构和力产生的兴趣。在这篇综述中,我们讨论了测量单应力纤维机械性能的方法。我们首先讨论在无细胞环境中进行的研究,包括基于完整应力纤维的分离以及从纯化组分中重构应力纤维状结构的策略。然后,我们根据从全细胞机械测量得出的应力纤维特性(例如原子力显微镜)和对单个应力纤维的直接询问(例如亚细胞激光纳米外科手术)来讨论在活细胞中获得的测量结果。我们通过回顾基于这些实验测量结果开发的各种应力纤维功能数学模型来得出结论。该领域未来的重要挑战是将这些复杂的生物物理测量结果与该领域对应力纤维装配,动力学和信号转导的日益详细的分子理解相结合。本文是《机械生物学》特刊的一部分。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号