首页> 外文期刊>Acta biomaterialia >Human insulin adsorption kinetics, conformational changes and amyloidal aggregate formation on hydrophobic surfaces
【24h】

Human insulin adsorption kinetics, conformational changes and amyloidal aggregate formation on hydrophobic surfaces

机译:人胰岛素吸附动力学,构象变化和淀粉样聚集体在疏水表面的形成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The formation of insulin amyloidal aggregates on material surfaces is a well-known phenomenon with important pharmaceutical and medical implications. Using surface plasmon resonance imaging, we monitor insulin adsorption on model hydrophobic surfaces in real time. Insulin adsorbs in two phases: first, a very fast phase (less than 1 min), where a protein monolayer forms, followed by a slower one that can last for at least 1 h, where multilayered protein aggregates are present. The dissociation kinetics reveals the presence of two insulin populations that slowly interconvert: a rapidly dissociating pool and a pool of strongly bound insulin aggregates. After 1 h of contact between the protein solution and the surface, the adsorbed insulin has practically stopped dissociating from the surface. The conformation of adsorbed insulin is probed by attenuated total reflection-Fourier transform infrared spectroscopy. Characteristic shifts in the amide A and amide II?? bands are associated with insulin adsorption. The amide I band is also distinct from that of soluble or aggregated insulin, and it slowly evolves in time. A 1708 cm-1 peak is observed, which characterizes insulin adsorbed for times longer than 30 min. Finally, Thioflavin T, a marker of extended ??-sheet structures present in amyloid fibers, binds to adsorbed insulin after 30-40 min. Altogether, these results reveal that the conformational change induced in insulin upon binding to hydrophobic surfaces allows further insulin binding from the solution. Adsorbed insulin is thus an intermediate along the ??-to-?? structural transition that results in the formation of amyloidal fibers on these material surfaces. ? 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
机译:在材料表面上形成胰岛素淀粉样蛋白聚集体是众所周知的现象,具有重要的药学和医学意义。使用表面等离振子共振成像,我们实时监测胰岛素在模型疏水性表面上的吸附。胰岛素的吸收分为两个阶段:第一阶段是非常快速的阶段(少于1分钟),在此阶段形成蛋白质单层,第二阶段是较慢的阶段,该阶段可持续至少1小时,其中存在多层蛋白质聚集体。解离动力学揭示了两个缓慢相互转化的胰岛素群体的存在:一个快速解离的池和一个强结合的胰岛素聚集体的池。蛋白质溶液与表面接触1小时后,吸附的胰岛素实际上已停止从表面解离。通过衰减全反射-傅立叶变换红外光谱探测被吸附的胰岛素的构象。酰胺A和酰胺Ⅱ的特征变化带与胰岛素吸收有关。酰胺I谱带也不同于可溶性胰岛素或聚集胰岛素,并且随着时间的推移它会缓慢发展。观察到一个1708 cm-1的峰,该峰的特征是胰岛素吸附时间超过30分钟。最后,硫黄素T(淀粉样蛋白纤维中存在的延伸的β-折叠结构的标志物)在30-40分钟后与吸附的胰岛素结合。总而言之,这些结果表明,与疏水性表面结合后在胰岛素中诱导的构象变化允许溶液中胰岛素的进一步结合。因此,吸附的胰岛素是沿??至??的中间体。导致在这些材料表面形成淀粉状纤维的结构转变。 ? 2012年Acta Materialia Inc.由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号