...
首页> 外文期刊>Acta biomaterialia >In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials.
【24h】

In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials.

机译:致密胶原蛋白底物的体外矿化:仿生方法,用于开发骨移植材料。

获取原文
获取原文并翻译 | 示例
           

摘要

Bone is an organic-inorganic composite which has hierarchical structuring that leads to high strength and toughness. The nanostructure of bone consists of nanocrystals of hydroxyapatite embedded and aligned within the interstices of collagen fibrils. This unique nanostructure leads to exceptional properties, both mechanical and biological, making it difficult to emulate bone properties without having a bone-like nanostructured material. A primary goal of our group's work is to use biomimetic processing techniques that lead to bone-like structures. In our prior studies, we demonstrated that intrafibrillar mineralization of porous collagen sponges, leading to a bone-like nanostructure, can be achieved using a polymer-induced liquid precursor (PILP) mineralization process. The objective of this study was to investigate the use of this polymer-directed crystallization process to mineralize dense collagen substrates. To examine collagen scaffolds that truly represent the dense-packed matrix of bone, manatee bone was demineralized to isolate its collagen matrix, consisting of a dense, lamellar osteonal microstructure. This biogenic collagen scaffold was then remineralized using polyaspartate to direct the mineralization process through an amorphous precursor pathway. The various conditions investigated included polymer molecular weight, substrate dimension and mineralization time. Mineral penetration depths of up to 100 mums were achieved using this PILP process, compared to no penetration with only surface precipitates observed for the conventional crystallization process. Electron microscopy, wide-angle X-ray diffraction and thermal analysis were used to characterize the resulting hydroxyapatite/collagen composites. These studies demonstrate that the original interpenetrating bone nanostructure and osteonal microstructure could be recovered in a biogenic matrix using the PILP process.
机译:骨是一种有机-无机复合材料,具有层次结构,可导致较高的强度和韧性。骨的纳米结构由羟基磷灰石的纳米晶体嵌入并排列在胶原纤维的间隙中组成。这种独特的纳米结构带来了卓越的机械和生物学性能,因此如果没有骨状纳米结构材料,就很难模拟骨骼性能。我们小组工作的主要目标是使用仿生加工技术来产生类骨结构。在我们先前的研究中,我们证明了使用聚合物诱导的液体前驱物(PILP)矿化过程可以实现多孔胶原海绵的原纤维内矿化,从而导致骨状纳米结构。这项研究的目的是研究使用这种聚合物定向结晶过程来矿化致密的胶原基质。为了检查真正代表骨密实基质的胶原蛋白支架,对海牛骨进行脱矿质处理以分离其胶原蛋白基质,该胶原蛋白基质由致密的层状骨微结构组成。然后使用聚天冬氨酸盐将这种生物源性胶原蛋白支架再矿化,以指导矿化过程通过无定形前体途径进行。研究的各种条件包括聚合物分子量,底物尺寸和矿化时间。与传统结晶工艺中仅观察到表面沉淀物的情况相比,使用PILP工艺可实现高达100微米的矿物渗透深度。使用电子显微镜,广角X射线衍射和热分析来表征所得的羟基磷灰石/胶原蛋白复合材料。这些研究表明,使用PILP工艺可以在生物基质中回收原始的互穿骨纳米结构和骨微结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号