首页> 外文期刊>BioSystems >Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament
【24h】

Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament

机译:肌动蛋白丝对接的肌球蛋白亚片段1的分子动力学模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Myosins are typical molecular motor proteins, which convert the chemical energy of ATP into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results observed in molecular motors, Masuda has proposed a theory called the "Driven by Detachment (DbD)" mechanism for the working principle of myosins. Based on this theory, the energy used during the power stroke of the myosins originates from the attractive force between a detached myosin head and an actin filament, and does not directly arise from the energy of ATP. According to this theory, every step in the myosin working process may be reproduced by molecular dynamics (MD) simulations, except for the ATP hydrolysis step. Therefore, MD simulations were conducted to reproduce the docking process of a myosin subfragment-1 (S1) against an actin filament. A myosin S1 directed toward the barbed end of an actin filament was placed at three different positions by shifting it away from the filament axis. After 30. ns of MD simulations, in three cases out of ten trials on average, the myosin made a close contact with two actin monomers by changing the positions and the orientation of both the myosin and the actin as predicted in previous studies. Once the docking was achieved, the distance between the myosin and the actin showed smaller fluctuations, indicating that the docking is stable over time. If the docking was not achieved, the myosin moved randomly around the initial position or moved away from the actin filament. MD simulations thus successfully reproduced the docking of a myosin S1 with an actin filament. By extending the similar MD simulations to the other steps of the myosin working process, the validity of the DbD theory may be computationally demonstrated.
机译:肌球蛋白是典型的分子运动蛋白,可将ATP的化学能转化为机械功。这种能量转换的基本机理仍然未知。为了解释在分子电动机中观察到的实验结果,增田增生提出了一种称为“由分离驱动(DbD)驱动”的机制,作为肌球蛋白的工作原理。基于该理论,在肌球蛋白动力冲程期间使用的能量源自分离的肌球蛋白头部与肌动蛋白丝之间的吸引力,而不直接来自于ATP的能量。根据该理论,除了ATP水解步骤外,肌球蛋白工作过程的每个步骤都可以通过分子动力学(MD)模拟进行复制。因此,进行了MD模拟以重现肌球蛋白亚片段1(S1)与肌动蛋白丝的对接过程。朝着肌动蛋白丝的带刺端的肌球蛋白S1通过移开远离丝的轴而放置在三个不同的位置。在进行30 ns的MD模拟后,平均十个试验中有三个病例,通过改变先前研究中预测的肌球蛋白和肌动蛋白的位置和方向,肌球蛋白与两种肌动蛋白单体紧密接触。一旦完成对接,肌球蛋白和肌动蛋白之间的距离就会显示出较小的波动,表明对接随时间稳定。如果未实现对接,则肌球蛋白会随机围绕初始位置移动或远离肌动蛋白丝。因此,MD模拟成功地再现了肌球蛋白S1与肌动蛋白丝的对接。通过将类似的MD模拟扩展到肌球蛋白工作过程的其他步骤,可以通过计算证明DbD理论的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号