...
首页> 外文期刊>Biochimica et biophysica acta. Molecular cell research >In vivo functional calcium imaging of induced or spontaneous activity in the fly brain using a GFP-apoaequorin-based bioluminescent approach
【24h】

In vivo functional calcium imaging of induced or spontaneous activity in the fly brain using a GFP-apoaequorin-based bioluminescent approach

机译:使用基于GFP-apoaequorin的生物发光方法对苍蝇脑中诱导或自发活动进行体内功能性钙成像

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Different optical imaging techniques have been developed to study neuronal activity with the goal of deciphering the neural code underlying neurophysiological functions. Because of several constraints inherent in these techniques as well as difficulties interpreting the results, the majority of these studies have been dedicated more to sensory modalities than to the spontaneous activity of the central brain. Recently, a novel bioluminescence approach based on GFP-aequorin (GA) (GFP: Green fluorescent Protein), has been developed, allowing us to functionally record in-vivo neuronal activity. Taking advantage of the particular characteristics of GA, which does not require light excitation, we report that we can record induced and/or the spontaneous Ca2+-activity continuously over long periods. Targeting GA to the mushrooms-bodies (MBs), a structure implicated in learning/memory and sleep, we have shown that GA is sensitive enough to detect odor-induced Ca2+-activity in Kenyon cells (KCs). It has been possible to reveal two particular peaks of spontaneous activity during overnight recording in the MBs. Other peaks of spontaneous activity have been recorded in flies expressing GA pan-neurally. Similarly, expression in the glial cells has revealed that these cells exhibit a cell-autonomous Ca2+-activity. These results demonstrate that bioluminescence imaging is a useful tool for studying Ca2+-activity in neuronal and/or glial cells and for functional mapping of the neurophysiological processes in the fly brain. These findings provide a framework for investigating the biological meaning of spontaneous neuronal activity. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
机译:已经开发了不同的光学成像技术来研究神经元活动,目的是破译潜在的神经生理功能的神经密码。由于这些技术固有的一些限制以及解释结果的困难,因此这些研究中的大多数更多地致力于感官模式,而不是中央大脑的自发活动。最近,已经开发了一种基于GFP-水母发光蛋白(GA)(GFP:绿色荧光蛋白)的新型生物发光方法,使我们能够功能性地记录体内神经元活性。利用不需要光激发的GA的特殊特性,我们报告可以长时间连续记录诱导的和/或自发的Ca2 +活性。将GA定位于蘑菇体(MBs),这是一种与学习/记忆和睡眠有关的结构,我们已经证明GA具有足够的敏感性,可以检测Kenyon细胞(KCs)中气味诱导的Ca2 +活性。在MB中记录过夜时,有可能揭示自发活动的两个特定峰。在以泛神经表达GA的果蝇中还记录了其他自发活动的峰值。类似地,在神经胶质细胞中的表达表明这些细胞表现出细胞自主的Ca2 +活性。这些结果表明,生物发光成像是研究神经元和/或神经胶质细胞中Ca2 +活性以及对蝇脑神经生理过程进行功能定位的有用工具。这些发现为研究自然神经元活动的生物学意义提供了框架。本文是名为“第十二届欧洲钙研讨会”的特刊的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号