首页> 外文期刊>ACM Journal on Emerging Technologies in Computing Systems >Design Space Exploration and Data Memory Architecture Design for a Hybrid Nano/CMOS Dynamically Reconfigurable Architecture
【24h】

Design Space Exploration and Data Memory Architecture Design for a Hybrid Nano/CMOS Dynamically Reconfigurable Architecture

机译:混合Nano / CMOS动态可重构架构的设计空间探索和数据存储架构设计

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, research on nanotechnology has advanced rapidly. Novel nanodevices have been developed, such as those based on carbon nanotubes, nanowires, etc. Using these emerging nanodevices, diverse nanoarchitectures have been proposed. Among them, hybrid nano/CMOS reconfigurable architectures have attracted attention because of their advantages in performance, integration density, and fault tolerance. Recently, a high-performance hybrid nano/CMOS reconfigurable architecture, called NATURE, was presented. NATURE comprises CMOS reconfigurable logic and interconnect fabric, and CMOS-fabrication-compatible nanomemory. High-density, fast nano RAMs are distributed in NATURE as on-chip storage to store multiple reconfiguration copies for each reconfigurable element. It enables cycle-by-cycle runtime reconfiguration and a highly efficient computational model, called temporal logic folding. Through logic folding, NATURE provides more than an order of magnitude improvement in logic density and area-delay product, and significant design flexibility in performing area-delay trade-offs, at the same technology node. Moreover, NATURE can be fabricated using mainstream photolithography fabrication techniques. Hence, it offers a currently commercially viable reconfigurable architecture with high performance, superior logic density, and outstanding design flexibility, which is very attractive for deployment in cost-conscious embedded systems. In order to fully explore the potential of NATURE and further improve its performance, in this article, a thorough design space exploration is conducted to optimize its architecture. Investigations in terms of different logic element architectures, interconnect designs, and various technologies for nano RAMs are presented. Nano RAMs can not only be used as storage for configuration bits, but the high density of nano RAMs also makes them excellent candidates for large-capacity on-chip data storage in NATURE. Many logic- and memory-intensive applications, such as video and image processing, require large storage of temporal results. To enhance the capability of NATURE for implementing such applications, we investigate the design of nano data memory structures in NATURE and explore the impact of memory density. Experimental results demonstrate significant throughput improvements due to area saving from logic folding and parallel data processing.
机译:近年来,对纳米技术的研究发展迅速。已经开发了新颖的纳米器件,例如基于碳纳米管,纳米线等的纳米器件。使用这些新兴的纳米器件,已经提出了多种纳米结构。其中,混合纳米/ CMOS可重构体系结构由于其在性能,集成密度和容错性方面的优势而备受关注。最近,提出了一种名为NATURE的高性能混合纳米/ CMOS可重构体系结构。 NATURE包括CMOS可重配置逻辑和互连结构以及与CMOS制造兼容的纳米内存。高密度,快速的纳米RAM作为片上存储器分布在NATURE中,以为每个可重配置元素存储多个重配置副本。它支持逐周期运行时重新配置和高效的计算模型,称为时间逻辑折叠。通过逻辑折叠,NATURE在同一技术节点上提供了逻辑密度和面积延迟乘积的多个数量级的改进,并在执行面积延迟权衡方面具有显着的设计灵活性。而且,可以使用主流的光刻制造技术来制造自然。因此,它提供了一种目前商业上可行的可重构架构,该架构具有高性能,卓越的逻辑密度和出色的设计灵活性,这对于在注重成本的嵌入式系统中进行部署非常有吸引力。为了充分挖掘NATURE的潜力并进一步提高其性能,在本文中,进行了全面的设计空间探索以优化其架构。提出了有关不同逻辑元件体系结构,互连设计以及用于纳米RAM的各种技术的研究。纳米RAM不仅可以用作配置位的存储,而且高密度的纳米RAM还使其成为NATURE中大容量片上数据存储的理想候选者。许多逻辑和内存密集型应用程序,例如视频和图像处理,都需要大量存储时间结果。为了增强NATURE实施此类应用程序的能力,我们研究了NATURE中的纳米数据存储结构的设计并探讨了存储密度的影响。实验结果表明,由于逻辑折叠和并行数据处理节省了面积,因此吞吐量显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号