首页> 外文期刊>ACM Journal on Emerging Technologies in Computing Systems >A Hybrid Nano/CMOS Dynamically Reconfigurable System - Part II: Design Optimization Flow
【24h】

A Hybrid Nano/CMOS Dynamically Reconfigurable System - Part II: Design Optimization Flow

机译:混合纳米/ CMOS动态可重配置系统-第二部分:设计优化流程

获取原文
获取原文并翻译 | 示例
           

摘要

In Part I of this work, a hybrid nano/CMOS reconfigurable architecture, called NATURE, was described. It is composed of CMOS reconfigurable logic and interconnect fabric, and nonvolatile nano on-chip memory. Through its support for cycle-by-cycle runtime reconfiguration and a highly-efficient computation model, temporal logic folding, NATURE improves logic density and area-delay product by more than an order of magnitude compared to existing CMOS-based field-programmable gate arrays (FPGAs). NATURE can be fabricated using mainstream photo-lithography fabrication techniques. Thus, it offers a currently commercially feasible architecture with high performance, superior logic density, and excellent runtime design flexibility. In Part II of this work, we present an integrated design and optimization flow for NATURE, called NanoMap. Given an input design specified in register-transfer level (RTL) and/or gate-level VHDL, NanoMap optimizes and implements the design on NATURE through logic mapping, temporal clustering, temporal placement, and routing. As opposed to other design tools for traditional FPGAs, NanoMap supports and leverages temporal logic folding by integrating novel mapping techniques. It can automatically explore and identify the best temporal logic folding configuration, targeting area, delay or area-delay product optimization. A force-directed scheduling technique is used to optimize and balance resource usage across different folding cycles. By supporting logic folding, NanoMap can provide significant design flexibility in performing area-delay trade-offs under various user-specified constraints. We present details of the mapping procedure and results for different architectural instances. Experimental results demonstrate that NanoMap can judiciously trade off area and delay targeting different optimization goals, and effectively exploit the advantages of NATURE.
机译:在这项工作的第一部分中,描述了一种称为NATURE的混合纳米/ CMOS可重配置体系结构。它由CMOS可重配置逻辑和互连结构以及非易失性纳米片上存储器组成。通过支持逐周期运行时重新配置和高效的计算模型,时间逻辑折叠,与现有的基于CMOS的现场可编程门阵列相比,NATURE将逻辑密度和面积延迟乘积提高了一个数量级。 (FPGA)。可以使用主流的光刻制造技术来制造NATURE。因此,它提供了具有高性能,卓越的逻辑密度和出色的运行时设计灵活性的当前商业可行的体系结构。在这项工作的第二部分中,我们介绍了NATURE的集成设计和优化流程,称为NanoMap。给定在寄存器传输级(RTL)和/或门级VHDL中指定的输入设计,NanoMap通过逻辑映射,时间集群,时间布置和路由在NATURE上优化和实现设计。与传统FPGA的其他设计工具相反,NanoMap通过集成新颖的映射技术来支持和利用时间逻辑折叠。它可以自动探索和识别最佳的时间逻辑折叠配置,目标区域,延迟或区域延迟产品优化。强制调度技术用于跨不同折叠周期优化和平衡资源使用。通过支持逻辑折叠,NanoMap可以在各种用户指定的约束下执行面积延迟权衡时提供显着的设计灵活性。我们提供了不同体系结构实例的映射过程和结果的详细信息。实验结果表明,NanoMap可以明智地权衡面积和延迟针对不同的优化目标,并有效地利用NATURE的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号