...
首页> 外文期刊>Bioelectrochemistry >Understanding conditions for which biological effects of nonionizing electromagnetic fields can be expected
【24h】

Understanding conditions for which biological effects of nonionizing electromagnetic fields can be expected

机译:了解可以预期的非电离电磁场的生物学效应的条件

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Scientific interest in the interaction of nonionizing electromagnetic fields with biological systems is longstanding, but often still controversial. Theories, models and computer simulations have usually emphasized physical interactions with subsystems (e.g. cell membranes) of a biological system. By extending this first necessary physical step to a second step of explicitly and quantitatively considering chemical changes, increased understanding appears possible. In the case of "strong fields", the role of field-altered chemistry is important to electrochemotherapy [Biochem. Pharmacol. 42, Suppl. (1991) 567] and creation of transdermal microconduits [Bioelectrochem. Bioenerg. 49 (1999) 11; J. Controlled Release 61 (1999) 185; J. Invest. Dermatol. 116 (2001) 40] for "weak fields" (a topic with much more controversy) consideration of chemical change shows that organized multicellular systems can be understood to respond to extremely small electric [Chaos 8 (1998) 576] or magnetic fields [Nature 405 (2000) 707]. In contrast, isolated individual cells interacting via voltage-gated channels [Proc. Natl. Acad. Sci. 92 (1995) 3740; Biophys. J. 75 (1998) 2251; Bioelectromagnetics 20 (1999) 102], or processes without "temperature compensation" [Biophys. J. 76 (1999) 3026], appear implausible. Satisfactory understanding is likely only if experimental and theoretical work is reconciled, within should therefore be emphasized. The interaction of electromagnetic fields with biological systems is of interest because of fundamental scientific curiosity, potential medical benefits and possible human health hazards.
机译:对非电离电磁场与生物系统相互作用的科学兴趣由来已久,但通常仍存在争议。理论,模型和计算机模拟通常强调与生物系统的子系统(例如细胞膜)的物理相互作用。通过将这第一必要的物理步骤扩展到明确和定量地考虑化学变化的第二步骤,可能会增加理解。在“强电场”的情况下,改变电场的化学作用对于电化学疗法[Biochem。 Pharmacol。 42,增刊。 (1991)567]和经皮微导管的创建[Bioelectrochem。生物能源。 49(1999)11; J.Controlled Release 61(1999)185; J.投资。皮肤病116(2001)40]的“弱场”(一个更具争议的话题)对化学变化的考虑表明,可以理解有组织的多细胞系统对极小的电场[Chaos 8(1998)576]或磁场[自然]作出反应405(2000)707]。相反,隔离的单个细胞通过电压门控通道相互作用[Proc。 Natl。学院科学92(1995)3740;生物物理学。 J.75(1998)2251;生物电磁学20(1999)102]或没有“温度补偿”的过程[Biophys。 J. 76(1999)3026],似乎难以置信。只有在实验和理论工作协调一致的情况下,才有可能取得令人满意的理解,因此应强调在此范围内。由于基本的科学好奇心,潜在的医学益处和可能的人体健康危害,电磁场与生物系统的相互作用是令人关注的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号