...
首页> 外文期刊>Journal of thermal analysis and calorimetry >Investigation of radical polymerization kinetics of poly(ethylene glycol) methacrylate hydrogels via DSC and mechanistic or isoconversional models
【24h】

Investigation of radical polymerization kinetics of poly(ethylene glycol) methacrylate hydrogels via DSC and mechanistic or isoconversional models

机译:通过DSC和机械或异组件模型研究聚(乙二醇)甲基丙烯酸酯水凝胶的自由基聚合动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Monomers composed of a polymerizable methacrylate moiety connected to a short poly(ethylene) glycol (PEG) chain are versatile building-blocks for the preparation of smart biorelevant materials. Hydrogels based on these PEG methacrylates are a very important class of biomaterials with several applications. The radical polymerization kinetics of two such oligomers, namely poly(ethylene glycol) methacrylate (PEGMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) was investigated. Experimental polymerization rate and monomer conversion data were measured using DSC operating under non-isothermal conditions, at several constant heating rates, or isothermal, at different constant reaction temperatures. Isoconversional techniques were employed to estimate the variation of the polymerization effective activation energy as a function of the extent of reaction. It was found that isothermal and non-isothermal experiments results in similar trends of the activation energy, whereas by comparison of differential to integral isoconversional methods it was postulated that in non-isothermal polymerization experiments integral methods should not be used. From comparison of the two oligomers employed in the polymerization experiments, it was clear that the presence of the terminal hydroxyl group in PEGMA compared to the methoxy group in PEGMEMA leads to different conversion time profiles and activation energies. In particular, monomer-monomer association through hydroxyl groups results in initially lower activation energy of PEGMA. As polymerization proceeds, the existence of aggregated hydroxyl structures ( OHOHOH ) in the PEGMA macromolecular chains result in higher activation energies and a more abrupt increase in the conversion time curve.
机译:由连接到短聚(乙烯)乙二醇(PEG)链的可聚合甲基丙烯酸酯部分组成的单体是用于制备智能钻石材料的多功能构建块。基于这些PEG甲基丙烯酸酯的水凝胶是具有多种应用的非常重要的生物材料。研究了两个这样的低聚物的自由基聚合动力学,即聚(乙二醇)甲基丙烯酸酯(PEGMA)和聚(乙二醇)甲基醚甲基丙烯酸甲酯(PEGMEMA)。在不同恒定的反应温度下,在非等温条件下在非等温条件下操作的DSC在不同的恒定反应温度下测量实验聚合速率和单体转化数据。采用异阳极技术来估计聚合有效活化能量的变化作为反应程度的函数。发现等温和非等温实验导致激活能量的相似趋势,而通过将差异与整体异组方法的比较,其假设在非等温聚合实验中不应使用整体方法。从聚合实验中使用的两种低聚物的比较,显然与PEGMEMA中的甲氧基相比,PEGMA中末端羟基的存在导致不同的转化时间谱和激活能量。特别地,通过羟基的单体单体结合导致佩格玛的最初降低的活化能量。随着聚合进行,PEGMA大分子链中聚集的羟基结构(OHOHOH)的存在导致较高的活化能量,并且转化时间曲线更突然增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号