首页> 外文期刊>Journal of thermal analysis and calorimetry >Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks
【24h】

Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks

机译:采用人工神经网络的各种纳米制冷剂池沸腾传热系数的预测

获取原文
获取原文并翻译 | 示例
           

摘要

In the present research, an artificial neural network model was developed to predict the pool boiling heat transfer coefficient (HTC) of refrigerant-based nanofluids based on a large number of experimental data (1342) extracted from the literature. Diverse training algorithms, e.g., Bayesian regulation backpropagation, Levenberg-Marquardt (LM), Resilient backpropagation and scaled conjugate gradient were utilized. Besides, several transfer functions like log-sigmoid (logsig), radial basis (radbas), soft max transfer function (softmax), hard-limit (hardlim), tan-sigmoid (tansig) and triangular basis (tribas) were applied for the hidden layer, and their influences on model correctness were surveyed. The effects of heat flux, saturation pressure, nanoparticle thermal conductivity, base fluid thermal conductivity, nanoparticle concentration (mass%), nanoparticles size and lubricant concentration (mass%) on the pool boiling HTC of refrigerant-based nanofluids were determined over wide ranges of operating conditions. A network possessing one hidden layer with 19 neurons using tansig and purelin as transfer functions in hidden and output layers in a row was introduced as a model having the best performance. In addition, LM was known as a much more efficient train algorithm in comparison with others resulting in extremely precise prediction. The outcomes indicated the present model could accurately estimate the pool boiling HTC of refrigerant-based nanofluids with a correlation coefficient (R-2) of 0.9948 and overall mean square error of 0.01529.
机译:在本研究中,开发了一种人工神经网络模型以预测基于从文献中提取的大量实验数据(1342)的制冷剂的纳米流体的池沸腾传热系数(HTC)。利用了各种培训算法,例如贝叶斯调节反射,Levenberg-Marquardt(LM),弹性背部衰退和缩放的共轭梯度。此外,若干传递函数,如log-sigmoid(logsig),径向基础(Radbas),软最大传递函数(softmax),硬限制(康多),Tan-sigmoid(Tansig)和三角形基础(草莓)对隐藏的层,调查了对模型正确性的影响。在宽范围内确定热通量,饱和压力,纳米颗粒导热性,基础流体导热性,纳米颗粒浓度(质量%),纳米颗粒尺寸和润滑剂浓度(质量%)的池沸腾的HTC的含量运行条件。作为具有最佳性能的模型,引入了具有使用TANSIG和PURELIN的具有19个神经元的一个隐藏层的网络作为具有最佳性能的模型。此外,LM被称为更高效的列车算法,与其他人相比,导致极其精确的预测。结果表明本模型可以准确地估计基于制冷剂的纳米流体的池沸腾HTC,其相关系数(R-2)为0.9948,总体均方误差为0.01529。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号