首页> 外文期刊>Journal of thermal analysis and calorimetry >Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure
【24h】

Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure

机译:用新型喷嘴结构通过微通道通过微通道流过微通道传热的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we analyze laminar flow for f-GNP nanofluid flow in different concentrations of solid nanoparticles. The computational domain of flow field and heat transfer is 3D, and for Re = 50, 100, 300, 700, a new rectangular microchannel design with cavity will be analyzed. The main objective of this study is determining the effect of boundary condition of inlet velocity for two structures in rectangular microchannel. Other goals of this study are investigating the effect of concentration of solid nanoparticles and Reynolds number on parameters including Nusselt number, friction factor and pressure drop and heat fluid performance evaluation criterion in different fluid and geometric parameters. The results of this study show that changing the direction of fluid at inlet and exit section has an important effect on flow field and heat transfer. Also, by adding a component to fluid velocity at inlet and exit sections, the value of heat transfer and friction factor will be increased. Using microchannel design with dimple can also create a good mixing for fluid during motion. Due to the solid walls, the momentum depreciation is greater in case (1), and also this affects the core regions of the fluid flow. In the microchannel, because of changes in the velocity components in different directions during the entrance of flow in microchannel, the mixing of the fluid for different regions and the amount of heat absorption increase. The existence of cavities in the flow path causes secondary flow to increase the temperature of the fluid during movement. In the microchannel case (2), due to direct fluid movement path, the velocity gradients are reduced and this prevents better mixing of the fluid and the heat transfer. Therefore, the distribution of temperature between the fluids is reduced and the layers of fluid close to the microchannel floor will experience higher temperature in comparison with other regions.
机译:在该研究中,我们分析了不同浓度固体纳米颗粒的F-GNP纳米流体流动的层流。流场和传热的计算领域是3D,并且对于RE = 50,100,300,700,将分析具有腔的新的矩形微通道设计。本研究的主要目的是确定入口速度边界条件对矩形微通道两种结构的影响。该研究的其他目标正在研究浓度的固体纳米颗粒和雷诺数对不同流体和几何参数的露珠数,摩擦因子和压降以及热流体性能评估标准的参数的影响。该研究的结果表明,在入口和出口部分改变流体方向对流场和传热具有重要作用。而且,通过在入口和出口部分处的流体速度添加成分,将增加传热和摩擦因子的值。使用微通道设计具有凹坑,还可以在运动期间产生良好的流体混合。由于固体壁,在(1)中,动量折旧更大,并且这也影响流体流动的核心区域。在微通道中,由于在微通道的流动入口期间不同方向的速度分量的变化,流体对不同区域的混合和吸热量增加。流动路径中的空腔的存在导致次要流动在运动期间增加流体的温度。在微通道壳体(2)中,由于直接流体运动路径,速度梯度减小,这防止了流体和热传递的更好混合。因此,减少了流体之间的温度分布,与微通道地板接近的流体层将与其他区域相比经历更高的温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号