首页> 外文学位 >Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS.
【24h】

Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS.

机译:微通道中纳米流体流动的计算分析及其在微散热器和生物MEMS中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Nanofluids, i.e., dilute suspensions of nanoparticles in liquids, may exhibit quite different thermal properties than the pure carrier fluids. For example, numerous experiments with nanofluids have shown that the effective thermal conductivities keff for such mixtures are measurably elevated, and hence beneficial applications to (micro-scale) cooling are obvious. A very different application of nanofluids could be in modern medicine, where for example, nanodrugs are mixed in microchannels for controlled delivery with bio-MEMS.;In general, to optimize nanofluid flow in microchannels, best possible conduit geometries, mixing units, and device operational conditions have to be found for specific applications. Specifically, a suitable k eff -- model of common nanofluids, performance as well as cost effective mixers, and entropy minimizing channel designs are the prerequisites for achieving these project objectives.;Two effective thermal conductivity models for nanofluids were compared in detail, where the new KKL (Koo-Kleinstreuer-Li) model, based on Brownian-motion induced micro-mixing, achieved good agreements with the currently available experimental data sets. The thermal performance of nanofluid flow in a trapezoidal microchannel was analyzed using pure water as well as a nanofluid, i.e., CuO-water, with volume fractions of 1% and 4% CuO-particles with dp = 28.6nm. It was found that nanofluids do measurably enhance the thermal performance of microchannel mixture flow with a small increase in pumping power. Specifically, the thermal performance increases with volume fraction; but, the extra pressure drop, or pumping power, will somewhat decrease the beneficial effects. Microchannel heat sinks with nanofluids are expected to be good candidates for the next generation of cooling devices. Microcooling device design aspects in light of minimization of entropy generation were investigated numerically. The influence of the Reynolds number (inlet velocity), fluid inlet temperature, and channel geometry on frictional and heat transfer entropy generation was investigated. It was found that the employment of nanofluids can help achieving entropy minimization due to their high thermal properties. The heat transfer induced entropy generation is dominant for the micro-cooling device. The frictional entropy generation becomes more important for high aspect ratio geometries.;A bio-MEMS application in terms of nanofluid flow in microchannels is presented. Specifically, the transient 3-D problem of controlled nanodrug delivery in a heated microchannel has been numerically solved to gain new physical insight and to determine suitable geometric and operational system parameters. Computer model accuracy was verified via numerical tests and comparisons with benchmark experimental data sets. The overall design goals of near-uniform nanodrug concentration at the microchannel exit plane and desired mixture fluid temperature were achieved with computer experiments considering different microchannel lengths, nanoparticle diameters, channel flow rates, wall heat flux areas, and nanofluid supply rates. Such micro-systems, featuring controlled transport processes for optimal nanodrug delivery, are important in laboratory-testing of predecessors of implantable smart devices as well as in the development of pharmaceuticals and for performing biomedical precision tasks.;As a sample application, the microfluidics of controlled nanodrug delivery to living cells in a representative, partially heated microchannel has been analyzed. The objective was to achieve uniform nanoparticle exit concentrations at a minimum microchannel length with the aid of simple static mixers, e.g., a multi-baffle-slit or perforated injection micro-mixer. A variable wall heat flux, which influences the local nanofluid properties and carrier fluid velocities, was added to ensure that mixture delivery to the living cells occurs at the required (body) temperature of 37°C. The results show that both the baffle-slit micro-mixer and the perforated injection micro-mixer aid in decreasing the microchannel length while achieving uniform nanoparticle exit concentrations. The injection micro-mixer not only decreases best the system's dimension, but also reduces the system power requirement. The baffle-slit micro-mixer also decreases the microchannel length; however, it may add to the power requirement. The imposed wall heat flux aids in enhanced nanoparticle and base-fluid mixing as well.
机译:纳米流体,即,纳米颗粒在液体中的稀释悬浮液,可以表现出与纯载流体完全不同的热性能。例如,大量的纳米流体实验表明,此类混合物的有效热导率keff显着提高,因此,在(微型)冷却中的有益应用是显而易见的。纳米流体的一个非常不同的应用可能是在现代医学中,例如,纳米药物在微通道中混合以通过生物MEMS进行受控传递;通常,为了优化微通道中的纳米流体流动,应尽可能优化导管的几何形状,混合单元和设备必须为特定应用找到运行条件。具体而言,合适的k eff-常见纳米流体模型,性能以及具有成本效益的混合器以及熵最小化通道设计是实现这些项目目标的先决条件。;详细比较了两种有效的纳米流体导热模型,其中基于布朗运动引起的微混合的新型KKL(Koo-Kleinstreuer-Li)模型与当前可用的实验数据集达成了良好的协议。使用纯水以及纳米流体,即CuO-水(体积分数为1%和4%的CuO颗粒,dp = 28.6nm)分析了梯形微通道中纳米流体流动的热性能。发现纳米流体确实可显着提高微通道混合物流的热性能,而泵浦功率却有少量增加。具体而言,热性能随体积分数而增加。但是,额外的压降或泵浦功率会在一定程度上降低其有益效果。带有纳米流体的微通道散热器有望成为下一代冷却设备的理想选择。从最小化熵产生的角度对微冷却装置的设计方面进行了数值研究。研究了雷诺数(入口速度),流体入口温度和通道几何形状对摩擦和传热熵产生的影响。已经发现,由于纳米流体的高热性质,使用纳米流体可以帮助实现熵最小化。对于微冷却装置,传热引起的熵产生是主要的。摩擦熵的产生对于高深宽比的几何形状变得越来越重要。;就纳米流体在微通道中的流动而言,提出了一种生物MEMS应用。具体而言,已在数值上解决了受控纳米药物在加热的微通道中传递的瞬态3-D问题,从而获得了新的物理见解并确定合适的几何和操作系统参数。通过数值测试和与基准实验数据集的比较来验证计算机模型的准确性。考虑到不同的微通道长度,纳米颗粒直径,通道流速,壁热通量面积和纳米流体供应速率,通过计算机实验实现了在微通道出口平面上接近均匀的纳米药物浓度和所需混合物流体温度的总体设计目标。这种微系统具有可控制的运输过程,可实现最佳的纳米药物输送,在可植入智能设备的前身的实验室测试以及药物的开发和执行生物医学精密任务方面都非常重要。已经分析了在有代表性的部分加热的微通道中控制纳米药物向活细胞的递送。目的是借助于简单的静态混合器,例如多挡板狭缝或多孔注射微型混合器,以最小的微通道长度实现均匀的纳米颗粒出口浓度。添加了可变的壁热通量,该热通量会影响局部纳米流体的特性和载流子的速度,以确保在所需的(体)温度为37°C时,向活细胞的混合物输送发生。结果表明,挡板狭缝式微混合器和穿孔式注射式微混合器均有助于减小微通道长度,同时实现均匀的纳米颗粒出口浓度。注射微混合器不仅可以最大程度地减小系统尺寸,还可以降低系统功率要求。折流缝微混合器也减小了微通道的长度。但是,这可能会增加功率要求。施加的壁热通量也有助于增强纳米颗粒和基础流体的混合。

著录项

  • 作者

    Li, Jie.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号