首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >NASICON LiM2(PO4)(3) electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance
【24h】

NASICON LiM2(PO4)(3) electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance

机译:Nasicon Lim2(PO4)(3)电解质(M = Zr)和用于所有固态锂离子电池的电极(M = Ti)材料,具有高总电导率和低界面抗性

获取原文
获取原文并翻译 | 示例
           

摘要

All solid-state batteries based on NASICON-type LiM2(PO4)(3) electrolyte phases are highly promising owing to their high ionic conductivities and chemical stabilities. Unlike Ti-based phases, extensively studied as Li+ solid electrolyte membranes, LiZr2(PO4)(3) (LZP) is expected to form a stable interface with a metallic lithium anode, a challenge which has posed a serious roadblock to realising safe all solid-state batteries. However, prohibitively large grain boundary resistances are often observed in this material and this issue, combined with processing difficulties in fabricating LZP in dense forms, has impinged on the application of LZP as a solid electrolyte for all solid-state batteries. To overcome these shortcomings and demonstrate the excellent potential of LZP as a solid electrolyte, we have developed a simple approach, based on sol-gel chemistry, to effectively improve the densification of the material leading to higher total conductivity than previously reported (1.0 x 10(-4) S cm(-1) at 80 degrees C) and enabling the investigation of the material as a Li+ solid electrolyte without the need for elaborate post-processing steps. The interfacial resistance decreases dramatically on using thin layers of Au buffer to improve the contact between Li and the LZP surface. The Li/LZP interface shows constant resistance upon Li+ cycling (at 40 mA cm(-2)), despite the formation of a passivation layer of Li3P/Li8ZrO6 on the LZP surface. This is consistent with the prediction that this surface layer serves as a Li+ conductive, solid electrolyte interface between Li and LZP. Finally, an analogue material, LiTi2(PO4)(3), is also introduced and demonstrated as an electrode material for proposed LZP-based all-solid-state batteries.
机译:由于其高离子导电性和化学稳定性,基于NASICON型LIM2(PO4)(3)电解质相的所有固态电池是高度承诺的。与基于Ti的相比,广泛地研究为Li +固体电解质膜,LizR2(PO4)(3)(3)(LZP)预计将形成具有金属锂阳极的稳定界面,这是一个挑战,这构成了一个严重的障碍,以实现安全的所有固体 - 电池。然而,在这种材料中经常观察到过大的晶界电阻,并且该问题与致密形式制造LZP的加工困难相结合,这使得LZP作为所有固态电池的固体电解质施加。为了克服这些缺点并证明LZP作为固体电解质的优异潜力,我们开发了一种简单的方法,基于溶胶 - 凝胶化学,有效地改善了导致较高总电导率的材料的致密化(1.0 x 10 (-4)厘米(-1)在80℃),使材料作为Li +固体电解质的研究,而无需精细处理后处理步骤。界面抗性在使用Au缓冲液的薄层急剧下降,以改善Li和LZP表面之间的接触。尽管在LZP表面上形成Li3P / Li8Zro6的钝化层,Li / LZP界面显示恒定电阻(在40 mA cm(-2))上。这与预测该表面层用作Li和LZP之间的Li +导电,固体电解质界面一致。最后,还引入了模拟材料,Liti2(PO4)(3)作为提出的基于LZP的全固态电池的电极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号