...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Stabilization of Pt nanoparticles at the Ta2O5-TaC binary junction: an effective strategy to achieve high durability for oxygen reduction
【24h】

Stabilization of Pt nanoparticles at the Ta2O5-TaC binary junction: an effective strategy to achieve high durability for oxygen reduction

机译:在Ta2O5-TAC二进制交界处的PT纳米粒子稳定:一种达到氧还原高耐久性的有效策略

获取原文
获取原文并翻译 | 示例

摘要

The fabrication of platinum (Pt)-based electrocatalysts with high electrochemical durability is a key prerequisite for the practical application of proton exchange membrane fuel cells (PEMFCs). In this work, we present an effective and scalable strategy to strongly stabilize Pt nanoparticles at a Ta-based (Ta2O5-TaC) binary junction formed by a controllable carbothermal phase conversion process, affording stable Pt-Ta2O5-TaC triple interfaces for durable catalysis of the oxygen reduction reaction (ORR). Our strategy utilizes a robust corrosion-resistant support for Pt nanoparticles involving a hollow-structured Ta2O5-TaC composite anchored on a thin carbon skeleton; the presence of the composite inhibits corrosion of the carbon support. The resulting hybrid support overcomes the drawbacks commonly associated with metal oxides and has a large specific surface area and high electrical conductivity owing to the presence of TaC and the carbon skeleton. X-ray absorption near edge structure analysis indicates the presence of strong interactions between Pt and Ta2O5-TaC that induce a surface electron delocalization of Pt and ensure the strong anchoring of Pt nanoparticles. When used as a catalyst for the ORR, the Ta2O5-TaC/C supported Pt electrocatalyst has high mass (0.297 A mg(Pt)(-1)) and specific (0.424 mA cm(-2)) activities (respectively 3.7 and 3.2-times those of commercial Pt/C) at 0.9 V. Furthermore, the electrocatalyst exhibits an outstanding electrochemical durability without any obvious degradation after 10 000 potential cycles in 0.1 M HClO4 solution, significantly outperforming commercial Pt/C which suffers 107 mV loss of half-wave potential. Our synthesis strategy offers a new avenue for developing highly durable Pt-based electrocatalysts with high activity which should have applications in practical PEMFCs.
机译:具有高电化学耐久性的铂(Pt)的电催化剂的制造是质子交换膜燃料电池(PEMFC)实际应用的关键前提。在这项工作中,我们提出了一种有效且可扩展的策略,以在通过可控碳热相转换过程中形成的基于TA的(Ta2O5-TAC)二进制交界处强烈稳定Pt纳米颗粒,这是稳定的Pt-Ta2O5-TAC三重界面,用于耐用催化氧还原反应(ORR)。我们的策略利用对Pt纳米颗粒的耐磨耐腐蚀载体,所述PT纳米粒子涉及锚固在薄碳骨架上的中空结构化TA2O5-TAC复合材料;复合材料的存在抑制了碳载体的腐蚀。所得到的混合支持克服了与金属氧化物共同相关的缺点,并且由于TAC和碳骨架的存在而具有大的比表面积和高电导率。近边缘结构分析附近的X射线吸收表明Pt和Ta2O5-Tac之间存在强相互作用,该TA诱导Pt的表面电子移植化并确保Pt纳米颗粒的强锚固。当用作ORR的催化剂时,TA2O5-TAC / C负载的PT电催化剂具有高质量(0.297A毫克(Pt)( - 1))和特异性(0.424mA(-2))活性(分别为3.7和3.2 - 在0.9 V的商业Pt / c的级数。此外,电催化剂在0.1M HClO 4溶液中的10 000个潜在循环后的10 000个潜在循环后表现出出色的电化学耐久性,显着优于107 mV损失的商业Pt / c。 - 波潜力。我们的综合战略提供了一种新的途径,用于开发高度耐用的PT基电催化剂,具有高活动,应具有实际PEMFC的应用。

著录项

  • 来源
  • 作者单位

    Beijing Univ Chem Technol Beijing Key Lab Electrochem Proc &

    Technol Mat State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Key Lab Electrochem Proc &

    Technol Mat State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Key Lab Electrochem Proc &

    Technol Mat State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Key Lab Electrochem Proc &

    Technol Mat State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Key Lab Electrochem Proc &

    Technol Mat State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号