首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Electrochemically customized assembly of a hybrid xerogel material via combined covalent and non-covalent conjugation chemistry: an approach for boosting the cycling performance of pseudocapacitors
【24h】

Electrochemically customized assembly of a hybrid xerogel material via combined covalent and non-covalent conjugation chemistry: an approach for boosting the cycling performance of pseudocapacitors

机译:通过组合的共价和非共价缀合化学电化学定制杂交Xerogel材料的组装:一种促进假偶联剂的循环性能的方法

获取原文
获取原文并翻译 | 示例
       

摘要

Organic quinones conjugated with a conductive support like graphene via a covalent and/or non-covalent approach are emerging as low-cost and sustainable alternatives to conventional pseudocapacitive materials because of their fast and reversible redox kinetics. Herein, for the first time, reduced graphene oxide (rGO) networks functionalized with the eco-friendly dopamine (DA) moiety in a combined covalent and non-covalent manner have been explored by a facile hydrothermal synthesis method as high-performance pseudocapacitive materials. Further, a unique in situ electrochemical polymerization approach has been undertaken in an attempt to boost the overall storage capacity as well as cycling stability. Electrochemical tuning of the active material can result in an enhancement in the specific capacitance via dual improvement in faradaic and capacitive current as compared to the initial xerogel material, highlighting the significance of the in situ process. The electrode material shows a highest specific capacitance (C-SP) of 348 F g(-1) at a current density of 0.5 A g(-1) in 1 M H2SO4 while retaining 60% of its initial capacitance even at a very high current density of 200 A g(-1). A metal-free all-solid-state symmetric supercapacitor was developed with the in situ electropolymerized active material and the as-fabricated device exhibits an excellent C-SP of 218 F g(-1) at 0.325 A g(-1) in 1 M PVA/H2SO4 gel electrolyte with a maximum energy density of 30.3 W h kg(-1) and power density up to 13 kW kg(-1). Most importantly, the material exhibited an extraordinary stability of 53 000 charge-discharge cycles while retaining 94% of its initial capacitance, while the device also shows an excellent capacitance retention of 92% even after 10 000 continuous cycles. Simultaneously, the DFT study was amended to understand the covalent and non-covalent interaction of the redox species, its charge storage mechanism and charge density distribution as well as to calculate the density of states.
机译:通过共价和/或非共价方法与导电载体缀合的有机Quinones,如石墨烯,是由于它们的快速和可逆的氧化还原动力学作为常规假壳材料的低成本和可持续的替代品。这里,本文首次通过容易的水热合成方法探索了以组合的共价和非共价方式官能化的环芳烃(DA)部分官能化的石墨烯(RGO)网络作为高性能假壳材料。此外,已经进行了独特的原位电化学聚合方法,以提高整体储存能力以及循环稳定性。与初始Xerogel材料相比,活性材料的电化学调谐可导致通过法拉第和电容电流的双达和电容电流的特定电容增强,突出了原位过程的重要性。电极材料在1M H 2 SO 4中的电流密度为0.5Ag(-1)的电流密度为348V(-1)的最高特定电容(C-SP),同时连续保持60%的初始电容电流密度为200Ag(-1)。用原位电聚合的活性材料开发无金属全固态对称超级涂物,并且制造的装置在1中以0.325Ag(-1)在0.325ag(-1)的优异C-SP。 M PVA / H2SO4凝胶电解质,最大能量密度为30.3WH kg(-1),功率密度高达13 kg kg(-1)。最重要的是,该材料的特殊稳定性为53 000充放电循环,同时保持其初始电容的94%,而该装置也显示出在10 000次连续循环之后的92%的优异电容保留。同时,修改DFT研究以了解氧化还原物种,其电荷存储机构和电荷密度分布的共价和非共价相互作用以及计算状态的密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号