首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Investigation of low intensity light performances of kesterite CZTSe, CZTSSe, and CZTS thin film solar cells for indoor applications
【24h】

Investigation of low intensity light performances of kesterite CZTSe, CZTSSe, and CZTS thin film solar cells for indoor applications

机译:用于室内应用的KETTERITE CZTSE,CZTSSE和CZTS薄膜太阳能电池的低强度轻型性能研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we prepared three kesterite thin-film solar cells, Cu2ZnSnSe4(CZTSe), Cu2ZnSn(S,Se)(4)(CZTSSe), and Cu2ZnSnS4(CZTS), and based on low light intensity measurements, examined the possibility of using kesterite devices for indoor applications. Interestingly, all the prepared cells exhibited nearly the same device efficiency under standard test conditions of 1 sun; however, under illumination with low-intensity halogen and LED lamps (200-400 lux), the power output of CZTSSe was twice that of CZTSe and CZTS. CZTSe (58%) and CZTS (37%) showed relatively larger open-circuit voltage drops than CZTSSe (29%). Suns-V(oc)measurements revealed that the ideality factor of CZTS and CZTSe increased as the light intensity decreased, which indicates severe recombination caused by deep-level defects at low light intensities. Furthermore, admittance spectroscopy measurements revealed that CZTSe and CZTS have deep trap energy levels, whereas CZTSSe has comparatively shallower trap energy levels; this validates the rapid open-circuit voltage drop under low light intensity conditions. Kelvin probe force microscopy measurements showed that CZTSSe exhibited a higher photovoltage (86 mV) under illumination at 400 lux compared with that under dark conditions. In addition, our results indicated that the CZTSSe sample showed relatively much higher charge separation at GBs (grain boundaries) owing to the downward band bending at the GBs. The findings revealed that for deeper energy levels, the open-circuit voltage reduction was faster; in addition, an absorber layer with shallower defects and efficient charge separation at the GBs can induce high power conversion efficiency under low-light conditions.
机译:在本研究中,我们制备了三种ketterite薄膜太阳能电池,Cu2zNSNSe4(CZTSE),Cu2ZnSn(C)(C)(CZTSSE)和Cu2ZNS4(CZTS),并基于低光强度测量,检查了以下可能性使用Kesterite设备进行室内应用。有趣的是,所有准备的细胞在1阳光的标准测试条件下表现出几乎相同的设备效率;然而,在低强度卤素和LED灯(200-400勒克斯)的照明下,CZTSSE的功率输出是CZTSE和CZT的两倍。 CZTSE(58%)和CZT(37%)显示比CZTSSE相对较大的开路电压下降(29%)。 Suns-V(OC)测量表明,随着光强度的降低,CZTS和CZTSE的理想因子增加,这表明在低光强度下深水位缺陷引起的严重重组。此外,导纳光谱测量显示,CZTSE和CZTS具有深度陷阱能级,而CZTSSE具有相对较浅的陷阱能量水平;这验证了低光强度条件下的快速开路电压降。 Kelvin探针力显微镜测量结果表明,与暗条件下的情况相比,CZTSSE在400勒克斯的照明下表现出更高的光电(86mV)。此外,我们的结果表明,由于GBS的向下带弯曲,CZTSSE样品在GBS(晶界)上显示了相对较高的电荷分离。结果表明,对于更深的能量水平,开路电压降低更快;另外,具有较浅的缺陷和GBS的有效电荷分离的吸收层可以在低光条件下引起高功率转换效率。

著录项

  • 来源
  • 作者单位

    Green Energy Inst Solar Energy R&

    D Dept Mokpo 58656 Chonnam South Korea;

    Chonnam Natl Univ Optaelect Convergence Res Ctr Gwangju 61186 South Korea;

    Chonnam Natl Univ Optaelect Convergence Res Ctr Gwangju 61186 South Korea;

    Chonnam Natl Univ Optaelect Convergence Res Ctr Gwangju 61186 South Korea;

    Univ New South Wales Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    Univ New South Wales Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    Univ New South Wales Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    Ajou Univ Dept Mol Sci &

    Technol Suwon 16499 South Korea;

    Incheon Natl Univ Dept Phys Incheon 22012 South Korea;

    Chonnam Natl Univ Optaelect Convergence Res Ctr Gwangju 61186 South Korea;

    Chonnam Natl Univ Optaelect Convergence Res Ctr Gwangju 61186 South Korea;

    Ajou Univ Dept Mol Sci &

    Technol Suwon 16499 South Korea;

    Univ New South Wales Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    Chonnam Natl Univ Optaelect Convergence Res Ctr Gwangju 61186 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号