...
首页> 外文期刊>Journal of Materials Science >Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu-Ni alloys as a model system
【24h】

Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu-Ni alloys as a model system

机译:单独的纳米级合金颗粒的相图中的熔化环:完全可混溶的Cu-Ni合金作为模型系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A modified thermodynamic approach to describe melting in isolated nanoscale materials is suggested. The Gibbs free energy change of nanoscale alloy particles is modeled as a function of composition, temperature and nucleus and particle sizes. Cu-Ni has been chosen as a model system due to the availability of thermodynamic data within the high-temperature interval 1300-1600 K. For the first time, "melting loops" in the temperature-composition phase diagram were calculated for nanoparticle of 25 and 80 nm, respectively. It is shown that such loops represent the equilibrium two-phase solid-liquid states and do not coincide with the limiting solubility curves-the solidus and the liquidus. This new finding leads to the "melting loop" concept concerning phase diagrams of nanoscale alloys introduced in this paper. It is found that Cu-Ni nanoparticles can melt in different ways, whereas the dominant transition mechanism is surface-induced melting that initiates from the surface and then proceeds toward the core region. The decrease in size causes also a change of the melting temperature, the temperature width of the phase transition, the solubility limit, the concentration width of the melting loop as well as a change of the shape and slope of the equilibrium curves of the two-phase region of the phase diagram. As expected, when the size of the nanoscale particle increases, the solidus temperature increases and the size-dependent phase diagram approaches the bulk phase diagram.
机译:提出了一种在孤立的纳米级材料中描述熔化的改进的热力学方法。纳米级合金颗粒的Gibbs自由能量变化是用组合物,温度和核和颗粒尺寸的函数建模的。由于高温间隔1300-1600 K内的热力学数据的可用性而被选择为模型系统。首次进行温度 - 组合相相中的“熔化环”,计算为25的纳米颗粒分别为80纳米。结果表明,这种环路表示平衡两相固液状态,并且与限制溶解度曲线 - 固体和液相率不一致。这种新发现导致了本文介绍的纳米级合金相介质的“熔化环”概念。发现Cu-Ni纳米颗粒可以以不同的方式熔化,而显性的过渡机制是表面诱导的熔化,其从表面引发,然后朝向芯区域进行。尺寸的降低也导致熔化温度的变化,相变的温度宽度,溶解度极限,熔化环的浓度宽度以及两者的平衡曲线的形状和斜率的变化。相图的相位区域。正如预期的那样,当纳米级粒子的尺寸增加时,固体温度升高,尺寸相关的相位图接近体相图。

著录项

  • 来源
    《Journal of Materials Science》 |2020年第26期|共18页
  • 作者单位

    Natl Acad Sci Ukraine Phys Chem Mat Sci Ctr Prospect Nauki 46 UA-03028 Kiev Ukraine;

    Westfalische Wilhelms Univ Munster Inst Mat Phys Wilhelm Klemm Str 10 D-48149 Munster Germany;

    Natl Acad Sci Ukraine Phys Chem Mat Sci Ctr Prospect Nauki 46 UA-03028 Kiev Ukraine;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号