...
首页> 外文期刊>Journal of Fluid Mechanics >Turbulent kinetic energy production and flow structures in flows past smooth and rough walls
【24h】

Turbulent kinetic energy production and flow structures in flows past smooth and rough walls

机译:湍流动能生产和流动结构在流过光滑和粗糙的墙壁

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Data available in the literature from direct numerical simulations of two-dimensional turbulent channels by Lee & Moser (J. Fluid Mech., vol. 774, 2015, pp. 395–415), Bernardini et?al.?(J. Fluid Mech., 742, 2014, pp. 171–191), Yamamoto & Tsuji (Phys. Rev. Fluids, vol. 3, 2018, 012062) and Orlandi et?al.?(J. Fluid Mech., 770, 2015, pp. 424–441) in a large range of Reynolds number have been used to find that $S^{st }$ the ratio between the eddy turnover time ( $q^{2}/unicode[STIX]{x1D716}$ , with $q^{2}$ being twice the turbulent kinetic energy and $unicode[STIX]{x1D716}$ the isotropic rate of dissipation) and the time scale of the mean deformation ( $1/S$ ), scales very well with the Reynolds number in the wall region. The good scaling is due to the eddy turnover time, although the turbulent kinetic energy and the rate of isotropic dissipation show a Reynolds dependence near the wall; $S^{st }$ , as well as $-langle Qangle =langle s_{ij}s_{ji}angle -langle unicode[STIX]{x1D714}_{i}unicode[STIX]{x1D714}_{i}/2angle$ are linked to the flow structures, and also the latter quantity presents a good scaling near the wall. It has been found that the maximum of turbulent kinetic energy production $P_{k}$ occurs in the layer with $-langle Qangle pprox 0$ , that is, where the unstable sheet-like structures roll-up to become rods. The decomposition of $P_{k}$ in the contribution of elongational and compressive strain demonstrates that the two contributions present a good scaling. However, the good scaling holds when the wall and the outer structures are separated. The same statistics have been evaluated by direct simulations of turbulen
机译:Lee&Moser(J. Fluid Mech,Vol.774,2015,PP.395-415),Bernardini等,来自二维湍流通道的直接数值模拟的数据来自二维湍流频道的直接数值模拟。?(j。流体机械。,742,2014,第171-191页),Yamamoto&Tsuji(Phys of。Rev. Fluids,Vol.3,2018,012062)和奥兰迪et?al。?(j。Fluid Mech。,770,2015,PP 。424-441)在大量的雷诺数中被用来找到$ s ^ { ast} $ s ^ { ast}涡流周转时间之间的比率($ q ^ {2} / unicode [stix] {x1d716} $ ,$ q ^ {2} $ with湍流动能和$ unicode [stix] {x1d716}的各向同性耗散率)和平均变形的时间尺度(1 / s $),非常稳定墙壁区域中的雷诺数。良好的缩放是由于涡流周转时间,虽然湍流动能和各向同性耗散速率显示了雷诺依赖墙壁; $ s ^ { ast} $,以及$ - langle q rangle = langle s_ {ij} s_ {ji} rangle - langle unicode [stix] {x1d714} _ {i} unicode [ stix] {x1d714} _ {i} / 2 rangle $与流动结构相关联,后者数量也呈现出墙上附近的好缩放。已经发现,最大的湍流动能产量$ P_ {k} $在与$ - langle Q rangle atthe 0 $大约0 $中,即不稳定的纸张结构卷起棒。延长和压缩应变贡献的$ P_ {k} $的分解表明这两种贡献呈现出良好的缩放。然而,在墙壁和外部结构被分离时,良好的缩放保持。通过直接模拟湍流来评估相同的统计数据

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号