...
首页> 外文期刊>Journal of Electronic Materials >Void Formation and Intermetallic Growth in Pulse Electrodeposited Cu-Sn Layers for MEMS Packaging
【24h】

Void Formation and Intermetallic Growth in Pulse Electrodeposited Cu-Sn Layers for MEMS Packaging

机译:脉冲电沉积Cu-Sn层的空隙形成和金属间生长MEMS包装

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrodeposited copper (Cu)-tin (Sn) based solid-liquid interdiffusion (SLID) bonding is becoming popular in wafer-scale packaging of inertial Micro-Electro-Mechanical-Systems (MEMS) sensors due to its inherent advantages of lower cost, low processing temperatures and less stringent surface uniformity requirements. However, eliminating micron-size voids within intermetallic compounds (IMCs) and bond interfaces has remained a challenging task. The present study focuses upon IMC growth and void formation at varying temperatures and times. Stacks of varying thickness of Cu and Sn were fabricated by electrodeposition, and the samples were annealed at temperature ranging up to 300 degrees C. Scalloped shaped Cu6Sn5 (eta-phase) and comparatively uniform Cu3Sn (epsilon-phase) intermetallics were observed. Experimental results show that the growth of metastable Cu6Sn5 dominates IMC formation at lower temperatures but as temperature increases, Cu3Sn dominates over the Cu6Sn5 growth. This IMC growth transition from Cu6Sn5 dominant growth to Cu3Sn dominant growth depends on the annealing temperature and has a critical time duration. The IMC thicknesses are compared with those obtained by numerical simulation models. For given annealing temperatures, intermittent voids formed in the IMC layers show increasing size and decreasing void fraction trends with increasing annealing times. The results suggest that Cu-Sn SLID bonding performed at 275 degrees C yields reliable bonding since the void growth is minimal. Based on these results, a test vehicle containing a kelvin structure and daisy chains (having large number of Cu-Sn bonded structure), was fabricated, resulting in electrical resistances lower than 30 m-ohms and 6 ohms, respectively.
机译:电沉积铜(Cu) - 锡(Sn)基固液相互扩散(滑动)接合变得流行在惯性微电子机械系统的晶片级封装(MEMS)传感器,由于较低的成本,较低的其固有的优点加工温度和较不严格的表面均匀性的要求。然而,金属间化合物(的IMC)和键接口内消除微米尺寸的空隙仍然是一个挑战性的任务。本研究中侧重于IMC生长和空隙形成在不同的温度和时间。变化的Cu和Sn的厚度的叠层,通过电沉积制造,并且将样品在温度下退火范围高达300摄氏度扇形形状的Cu6Sn5(η相)和观察到的金属间化合物比较均匀的Cu 3 Sn(ε-相)。实验结果表明,亚稳的Cu6Sn5的生长占主导地位IMC的形成在较低的温度,但随着温度的升高,占主导地位的Cu 3 Sn过的Cu6Sn5增长。从的Cu6Sn5优势生长到的Cu3Sn优势生长这个IMC生长过渡取决于退火温度和具有临界持续时间。的IMC厚度与通过数值模拟模型获得的那些进行比较。对于给定的退火温度,形成在IMC层间歇空隙表现出增加的尺寸和随退火时间减少空隙率的趋势。该结果表明Cu-Sn系SLID在275摄氏度得到可靠接合,因为空隙生长是最小的执行键合。基于这些结果,将含有(具有大量Cu-Sn金属键合的结构的)一个开尔文结构和菊花链的测试车辆,制作,导致的电阻大于30分别米欧姆和6欧姆,降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号