...
首页> 外文期刊>Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry >Electron migration optimization through nanostructural control of hierarchical Fe3O4 based counter electrodes for high-performance dye-sensitized solar cells
【24h】

Electron migration optimization through nanostructural control of hierarchical Fe3O4 based counter electrodes for high-performance dye-sensitized solar cells

机译:基于分层Fe3O4基于分层Fe3O4的低性能染色太阳能电池的纳米结构控制电子迁移优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reasonably designing of counter electrode (CE) and iodine ion electrolyte is crucial for enhancing the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Fe3O4 possesses high conductivity and catalytic activity to facilitate the electrolyte reduction reaction at the surface of CE. However, the morphology control and active site modulation of Fe(3)O(4 )based CE are still to be explored. Herein, we propose a facile bottom-top strategy to prepare hierarchical Fe3O4 nanostructures with different tunable morphologies, including Fe3O4 nanorings (NR), nanosheets (NS) and nanoflowers (NF). Electrochemical impedance spectroscopy, Tafel polarization, cyclic voltammetry and photocurrent density-voltage measurements of these samples were carried out, revealing their high performances as CE in DSSCs. Among them, the Fe3O4 NF with mesoporous nanosphere flower structure and high specific surface area is synthesized, which realized the highest PCE (8.56%), which is also higher than the value of Pt based CE (7.57%). Compared to other competing materials, Fe3O4 nanostructure based CE shows the outstanding merits of high photovoltaic performance, easy preparation, low cost and eco-friendliness, offering the possibility to replace conventional Pt based CE in DSSCs. (C) 2020 Elsevier B.V. All rights reserved.
机译:对电极(Ce)和碘离子电解质的合理设计对于提高染料敏化太阳能电池(DSSCs)的功率转换效率(PCE)是至关重要的。 Fe3O4具有高导电性和催化活性,以促进Ce表面的电解质还原反应。然而,仍然探索基于Fe(3)O(4)CE的形态控制和主动点调制。在此,我们提出了一种容易的底层策略,用于制备具有不同可调形态的分层Fe3O4纳米结构,包括Fe3O4纳米(NR),纳米蛋白酶(NS)和纳米母线(NF)。进行电化学阻抗光谱,Tafel偏振,循环伏安法和光电流密度 - 电压 - 电压 - 电压 - 电压 - 电压测量,揭示了DSSC中的CE的高性能。其中,合成了具有介孔纳米环花结构和高比表面积的Fe3O4 NF,其实现了最高的PCE(8.56%),其也高于基于PT的Ce(7.57%)的值。与其他竞争材料相比,FE3O4基于纳米结构的CE显示出高光伏性能,易于制备,低成本和生态友好性的卓越优点,提供了更换常规PT的CE在DSSC中的可能性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号