...
首页> 外文期刊>Journal of Colloid and Interface Science >Construction of direct all-solid-state Z-scheme p-n copper indium disulfide/tungsten oxide heterojunction photocatalysts: Function of interfacial electric field
【24h】

Construction of direct all-solid-state Z-scheme p-n copper indium disulfide/tungsten oxide heterojunction photocatalysts: Function of interfacial electric field

机译:直接全固态Z形方案P-N铜铟二硫化铟/钨氧化物异质结光催化剂的构建:界面电场的功能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Construction of Z-scheme heterojunction (ZCH) is one of the most effective ways to enhance photocatalytic performance of photocatalysts. The direct all-solid-state p-n ZCH shows the best prospect, but its fabrication mechanism, especially function of the interfacial electric field (IEF) was rarely expounded explicitly. Herein, a direct all-solid-state p-n copper indium disulfide/tungsten oxide (CIS/WO) ZCH was prepared through a facile hydrothermal process for the first time. The CIS/WO ZCH exhibits enhanced photocatalytic activity because of significantly accelerated photogenerated charge separation via a Z-scheme charge migration process. The Z-scheme charge transfer pathway is inferred from matched energy band levels of CIS and WO and the IEF is confirmed to play a key role. The CIS/WO ZCH can fast produce singlet oxygen via hole oxidation of superoxide radicals under visible light irradiation, while pure CIS and WO cannot, effectively verifying the Z-scheme charge transfer process. This work illustrates the principle for fabrication of the direct all-solid-state p-n ZCH and function of the IEF, as well as provides a new ZCH. (C) 2019 Elsevier Inc. All rights reserved.
机译:Z形方案的构建异质结(ZCH)是增强光催化剂光催化性能的最有效方法之一。直接全固态P-N ZCH显示了最佳展望,但其制造机制,尤其是界面电场(IEF)的功能很少明确阐述。在此,通过第一次通过容易的水热法制备通过容易水热法制备直接全固态P-N铜铟/氧化钨(CIS / WO)ZCH。 CIS / WO ZCH表现出增强的光催化活性,因为通过Z方案电荷迁移过程显着加速了光催化的电荷分离。从CIS和WO的匹配能带水平推断出Z方案电荷转移途径,并确认IEF发挥关键作用。 CIS / WO ZCH可以在可见光照射下快速产生通过空穴氧化的单线氧,而纯CIS和WO不能有效地验证Z方案电荷转移过程。这项工作说明了制造直接全固态P-N ZCH和IEF功能的原理,以及提供新的ZCH。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号