...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness
【24h】

Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness

机译:超高硬度双相纳米晶体CRMNFEVTI高熵合金的相形成和强化机制

获取原文
获取原文并翻译 | 示例
           

摘要

A novel equimolar CrMnFeVTi high-entropy alloy (HEA) was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). The phase formation and microstructure in the milled powders and in the sintered bulk HEA were characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that a body-centered cubic (BCC) phase formed gradually in the milled powders during MA. After SPS, a very small fraction of the BCC phase transformed into a face-centered cubic (FCC) phase. Thus, the sintered bulk CrMnFeVTi HEA exhibits a dual-phase structure of BCC and FCC phases, with an average nano-scale grain size of similar to 97 nm. Thermodynamic analysis demonstrates that it is the high concentration of titanium in the bulk CrMnFeVTi HEA that stabilizes this dual-phase microstructure over a single-phase microstructure. Titanium has the largest atomic radius and the highest enthalpy of mixing with the other elements, leading to a phase transformation from the BCC phase to FCC phase during SPS. The bulk CrMnFeVTi HEA exhibits extremely high values of compressive strength (2279.53 MPa) and hardness (835 HV), which are significantly higher than those reported for most single-phase BCC structured HEAs. Calculations performed for the contributions of different strengthening mechanisms in this HEA indicate that dislocation and grain boundary strengthening play the most significant roles, whereas the effect of solid solution strengthening effect is very limited because of the release of lattice distortion energy during the BCC to FCC phase transformation in the SPS process. (C) 2018 Elsevier B.V. All rights reserved.
机译:通过机械合金化(MA)和火花等离子体烧结(SPS)合成了一种新颖的等摩尔CRMNFEVTI高熵合金(HEA)。使用X射线衍射(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)的组合表征碾磨粉末和烧结体Hea中的相形成和微观结构。发现在MA期间在研磨粉末中逐渐形成的身体中心立方(BCC)相。在SPS之后,将BCC阶段的非常小的分数转换成面对面的立方(FCC)相。因此,烧结散装CRMNFEVTI HEA具有BCC和FCC相的双相结构,平均纳米级晶粒尺寸类似于97nm。热力学分析表明,它是散装CRMNFEVTI Hea中的高浓度钛,其稳定在单相微结构上的这种双相微观结构。钛具有最大的原子半径和与其他元素混合的最高焓,导致来自SPS期间的来自BCC阶段到FCC阶段的相变。散装CRMNFEVTI HEA表现出极高的抗压强度值(2279.53MPa)和硬度(835 HV),显着高于报告的大多数单相BCC构造的SEAS。对该HEA中不同强化机制的贡献进行的计算表明,脱位和晶界强化发挥着最大的作用,而固溶强化效果的效果是非常有限的,因为在BCC期间晶格变形能量释放到FCC阶段转换在SPS过程中。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号