...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Fracture behavior of metal oxide/silver nanowire composite electrodes under cyclic bending
【24h】

Fracture behavior of metal oxide/silver nanowire composite electrodes under cyclic bending

机译:循环弯曲下金属氧化物/银纳米线复合电极的断裂行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mechanical responses under cyclic bending of Ag nanowire composite electrodes coated with various metal oxide films of different thicknesses were explored, in an attempt to evaluate their applicability to flexible transparent electrodes. Al2O3, HfO2, and TiO2films were deposited onto Ag nanowire electrodes by atomic layer deposition at a low temperature of 100?°C, and cyclic bending tests with in situ resistance measurements were conducted for up to 300,000 cycles. Thicker metal oxide films resulted in greater increases in the resistances of the composite electrodes under cyclic bending due to the reduced fracture strength of the films. Regardless of the type of metal oxide, however, similar tendencies were observed in the resistance changes in response to cyclic bending. It was found that the critical thickness calculation based on the Griffith theory for the evaluation of the brittle-to-ductile transition was not applicable to the metal oxide/Ag nanowire composite electrodes. By correlating the mechanical, ambient, and thermal reliability test results with those of optoelectrical property evaluations, the optimal thickness of Al2O3film, as a representative metal oxide film, was determined to be 3–5?nm for Ag nanowire composite flexible transparent electrodes.
机译:下环状银纳米线涂覆有不同厚度的各种金属氧化物薄膜复合电极的弯曲机械的反应进行了探索,企图其适用性评估为柔性透明电极。氧化铝,HfO 2和二氧化钛薄膜是在100低温沉积到通过原子层沉积银纳米线电极?℃,并用在原位电阻测量环状弯曲试验长达300000个循环。较厚的金属氧化物膜导致下循环弯曲复合电极的电阻归因于膜的降低的断裂强度更大的增加。无论金属氧化物的类型,但是,在电阻变化未观察到响应于周期性弯曲同样的倾向。已发现,基于该理论格里菲斯为脆韧转变的评价临界厚度计算并不适用于金属氧化物/银纳米线复合电极。由机械,环境和热的可靠性试验结果与光电性能评价,Al2O3film的最佳厚度的,作为代表性的金属氧化物膜进行相关,被确定为3-5?纳米为银纳米线复合柔性透明电极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号