...
【24h】

Electrodeposited Ni-B/SiC micro- and nano-composite coatings: A comparative study

机译:电沉积Ni-B / SiC微型和纳米复合涂层:比较研究

获取原文
获取原文并翻译 | 示例

摘要

Ni-B/SiC micro- and nano-composite coatings were electrodeposited in a modified watts bath containing SiC micro- and nano-particles with the average size of 3 mu m and 100 nm, respectively. The chemical composition, SiC content; X-SiC (wt.%), morphology, surface roughness, thickness, hardness and corrosion resistance of the deposited coatings were studied as a function of the particle concentration in the deposition bath (C-SiC = 2, 4, 6, 8 g/L) and deposition current density (i(d) = 0.5, 1, 2 and 3 A/dm(2)), using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Inductively Coupled Plasma (ICP), X-Ray Diffraction (XRD), microhardness measurements and potentiodynamic polarization (PP) tastings, respectively. The results indicated that the SiC content and surface roughness (R-a) of microcomposite coatings are increased with increasing both the Csic and id and reached to the maximum of X-SiC = 14.8 wt% and R-a= 4.58 mu m at the C-SiC= 8 g/L and i(d) = 3 A/dm(2). While the SiC content and roughness of nano-composite coating are initially increased and then decreased with increasing both the Csic and id and the maximum of X-SiC= 9.6 wt% and R-a= 2.28 mu m were obtained at the C-SiC = 4 g/L and i(d) =1 A/dm(2). The thickness of both type of coatings increases almost linearly with id and micro-composite coatings exhibit greater thickness values. The nano-composites exhibit higher hardness and corrosion resistance than micro-composites despite having lower SiC contents. The maximum hardness and minimum corrosion resistance were 1035 HV and 0.03 mu A/cm(2) for micro- and 889 HV and 0.38 mu A/cm(2) for nan-composite coatings, respectively. (C) 2018 Elsevier B.V. All rights reserved.
机译:将Ni-B / SiC微量和纳米复合涂层电沉积在含有SiC微型和纳米颗粒的改性瓦特浴中,分别具有3μm和100nm的平均尺寸。化学成分,SiC含量;作为沉积浴中的颗粒浓度的函数研究了沉积涂层的形态,表面粗糙度,厚度,硬度和耐腐蚀性(C-SiC = 2,4,6,8g,研究了沉积涂层的函数。 / L)和沉积电流密度(I(d)= 0.5,1,2和3a / dm(2)),使用扫描电子显微镜(SEM),能量分散光谱(EDS),电感耦合等离子体(ICP), X射线衍射(XRD),微硬度测量和电位动力学极化(PP)品味分别。结果表明,微型复合涂层的SiC含量和表面粗糙度(Ra)随着CSIC和ID的增加而增加,并且在C-SiC =处达到X-SiC = 14.8wt%的最大值,并且Ra =4.58μm。 8 g / l和i(d)= 3 a / dm(2)。虽然纳米复合涂层的SiC含量和粗糙度最初是增加,然后随着CSIC = 4获得的CSIC = 9.6wt%的最大值和X-SiC = 9.6wt%和Ra =2.28μm的最大值降低g / l和i(d)= 1 a / dm(2)。两种涂层的厚度几乎线性地增加,ID,微复合涂层表现出更大的厚度值。尽管具有较低的SiC含量,纳米复合材料表现出比微复合材料更高的硬度和耐腐蚀性。对于纳米复合涂层的微量和889HV和0.38μA/ cm(2),最大硬度和最小耐腐蚀性为1035HV和0.03μA/ cm(2),用于纳米复合涂层。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号