...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries
【24h】

Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

机译:磷酸铁钛作为锂离子电池的高比力电极材料

获取原文
获取原文并翻译 | 示例
           

摘要

Two iron titanium phosphates, Fe_(0.5)TiOPO_4 and Fe_(0.5)Ti_2(PO_4)_3, were prepared, and their crystal structures and electrochemical performances were compared. The electrochemical measurements of Fe_(0.5)TiOPO_4 as an anode of a lithium ion cell showed that upon the first discharge down to 0.5 V, the cell delivered a capacity of 560 mA h/g, corresponding to the insertion of 5 Li's per formula unit Fe_(0.5)TiOPO_4. Ex-situ XRD reveals a gradual evolution of the structure during cycling of the material, with lower crystallinity after the first discharge cycle. By correlating the electrochemical performances with the structural stud ies, new insights are achieved into the electrochemical behaviour of the Fe_(0.5)TiOPO_4 anode material, sug gesting a combination of intercalation and conversion reactions. The Nasicon-type Fe_(0.5)Ti_2(PO_4)_3 consists of a three-dimensional network made of corners and edges sharing [TiO_6] and [FeO_6] octahedra and [PO_4] tetrahedra leading to the formation of trimmers [FeTi_2O_(12)]. The first discharge of lithium ion cells based on Fe_(0.5)Ti_2(PO_4)_3 materials showed electrochemical activity of Ti~(4+)/Ti~(3+) and Fe~(2+)/Fe~° couples in the 2.5-1 V region. Below this voltage, the discharge profiles are typical of phosphate systems where U3PO4 is a product of the electrochemical reaction with lithium; moreover, the electrolyte solvent is reduced. An initial capacities as high as 1100 mAhg~(-1) can be obtained at deep discharge. However, there is an irreversible capacity loss in Fe_(0.5)Ti_2(PO_4)_3 due to the occurrence of insulating products as Li_3PO_4 and a solid electrolyte interface.
机译:制备了两种铁钛钛,制备了Fe_(0.5)TioPo_4和Fe_(0.5)Ti_2(PO_4)_3,并进行了它们的晶体结构和电化学性能。作为锂离子电池的阳极的Fe_(0.5)Tiopo_4的电化学测量显示,在第一放电下至0.5V时,电池输送了560mA H / g的容量,对应于每配方单元的5李的插入fe_(0.5)TIOPO_4。前地XRD揭示了在材料循环期间结构的逐渐演变,在第一放电循环后具有较低的结晶度。通过将电化学性能与结构螺柱IE相关联,可以实现Fe_(0.5)TioPo_4阳极材料的电化学行为,从而捕获嵌入和转化反应的组合的电化学行为。 NASICON型FE_(0.5)TI_2(PO_4)_3由一个由角落和边缘的三维网络组成,分享[TiO_6]和[Feo_6]八面体和[PO_4]四面体导致修剪器的形成[FETI_2O_(12) ]。基于Fe_(0.5)Ti_2(PO_4)_3材料的第一次排出基于Fe_(0.5)Ti_2(PO_4)的材料显示电化学活性Ti〜(4 +)/ Ti〜(3+)和Fe〜(2 +)/ Fe〜°耦合的电化学活性2.5-1 V地区。低于该电压,排出型材是典型的磷酸盐系统,其中U3PO4是与锂的电化学反应的产物;另外,电解质溶剂减少。在深度放电时可以获得高达1100mAhg〜(-1)的初始容量。然而,由于Li_3PO_4和固体电解质界面存在绝缘产品,FE_(0.5)TI_2(PO_4)_3中存在不可逆的容量损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号