首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Deformation behavior and microstructure evolution of AZ31B composites containing multiscale distribution during room temperature tensile
【24h】

Deformation behavior and microstructure evolution of AZ31B composites containing multiscale distribution during room temperature tensile

机译:AZ31B复合材料的变形行为和微观结构演化在室温拉伸期间含有多尺度分布的复合材料

获取原文
获取原文并翻译 | 示例
       

摘要

The tensile strength of the AZ31B alloy with multiscale distribution has been greatly improved when compared with conventional Mg alloys. Its properties have also been determined to be sensitive to the interaction between multiscale SiC and dislocations. This work studies how multiscale SiC affects this material's properties, as well as how it modifies the deformation/fracture behavior of matrix, through transmission electron microscope (TEM) examination of the elongated samples. When the strain increases, it is easy to form stress concentration in the zone around micron SiC, thus causing the activation of dislocation. The presence of relatively more number of small sized (evenly distributed submicron or nano) SiC seen in the space left between micron SiC would actively pin the dislocation and act as dislocation movement obstacle, resulting in the increase of dislocation density around SiC. Moreover, the addition of micron or submicron SiC is responsible for the increase of deformation stability. Although the strain localization around micron SiC could promote the nucleation of cracks, the dispersed nano or submicron SiC could delay and suppress the crack propagation. Moreover, compared with micron SiC, the nano SiC/Mg interface exhibits stronger bonding, so that the crack propagation is delayed due to the addition of nano SiC, and the ductility of material with multiscale distribution is reserved. (C) 2019 Elsevier B.V. All rights reserved.
机译:与常规Mg合金相比,通过多尺度分布的AZ31B合金的拉伸强度得到大大提高。它的性质也被确定为对多尺度SiC和脱位之间的相互作用敏感。这项工作研究多尺度SiC如何影响这种材料的性质,以及如何通过细长样品的透射电子显微镜(TEM)检查来改变矩阵的变形/断裂行为。当应变增加时,易于在微米SiC周围的区域中形成应力浓度,从而导致脱位的激活。在微米SiC之间的空间中看到的相对较多的小尺寸(均匀分布的亚微米或纳米)SiC的存在将主动地将位错引脚并充当位错运动障碍物,导致SiC周围位错密度的增加。此外,添加微米或亚微米SiC是负责变形稳定性的增加。虽然微米SiC周围的应变定位可以促进裂缝的成核,但分散的纳米或亚微米SiC可以延迟并抑制裂缝繁殖。此外,与微米SiC相比,纳米SiC / Mg界面表现出更强的粘合,从而由于添加纳米SiC而延迟裂缝传播,并且保留具有多尺度分布的材料的延展性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号