...
首页> 外文期刊>Journal of Applied Polymer Science >Electrical conductivity transformation mechanism of GNPs/CB/SR nanocomposite foams
【24h】

Electrical conductivity transformation mechanism of GNPs/CB/SR nanocomposite foams

机译:GNPS / CB / SR纳米复合泡沫的电导率变换机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highly flexible and electrically conductive graphene nanoparticles/carbon black/silicon rubber (GNPs/CB/SR) based nanocomposite foams were formed by using azodicarbonamide (AC) physical foaming technology. The foaming parameters (foaming agent and foaming time) were analyzed to investigate the influence on the electrical properties and microcellular structure. The electrical percolation threshold of GNPs/CB/SR nanocomposite foams approximately decreases from 25% to 30%, as the volume expansion increases through foaming. Nanocomposite foams with conductive fillers of 3-12 wt %, foaming agent of 12-18 wt %, foaming time of about 150-500 s, relative densities of 1.0-0.4 g/cm(3) were achieved, providing a scheme to evaluate the transformation of electrical properties with different foaming degree. It is worth noting that the product of AC agent concentration and foaming time reaches a certain value, and the highest electrical conductivity of foamed nanocomposites could be achieved. The nonmonotonicity changing of the electrical conductivity was demonstrated. Combined with the microtopography characterization, the cell growth effect was introduced to illustrate the transformation mechanism of the electrical conductivity. The relationship between the microcellular structure and the electrical conductivity of the foamed nanocomposites was established, which is essential for further optimizations of the foaming materials for the targeted application.
机译:通过使用偶氮喹甲酰胺(AC)物理发泡技术,形成高度柔韧和导电的石墨烯纳米颗粒/炭黑/硅橡胶(GNPS / CB / SR)的纳米复合泡沫。分析发泡参数(发泡剂和发泡时间)以研究对电性能和微孔结构的影响。随着体积膨胀通过发泡增加,GNPS / Cb / Sr纳米复合泡沫的电渗透阈值大致降低至30%至30%。具有3-12wt%的导电填料的纳米复合泡沫,发泡剂12-18wt%,发泡时间为约150-500秒,达到1.0-0.4g / cm(3)的相对密度,提供了评估方案具有不同发泡度的电性能的转化。值得注意的是,AC试剂浓度和发泡时间的产物达到一定值,并且可以实现发泡纳米复合材料的最高导电性。证明了导电性的非单调性改变。结合微拷贝表征,引入了细胞生长效果以说明电导率的变换机制。建立了微孔结构与发泡纳米复合材料的电导率之间的关系,这对于靶向施用的发泡材料的进一步优化是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号