...
首页> 外文期刊>Journal of Applied Polymer Science >Electrical conductivity transformation mechanism of GNPs/CB/SR nanocomposite foams
【24h】

Electrical conductivity transformation mechanism of GNPs/CB/SR nanocomposite foams

机译:GNPS / CB / SR纳米复合泡沫的电导率变换机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highly flexible and electrically conductive graphene nanoparticles/carbon black/silicon rubber (GNPs/CB/SR) based nanocomposite foams were formed by using azodicarbonamide (AC) physical foaming technology. The foaming parameters (foaming agent and foaming time) were analyzed to investigate the influence on the electrical properties and microcellular structure. The electrical percolation threshold of GNPs/CB/SR nanocomposite foams approximately decreases from 25% to 30%, as the volume expansion increases through foaming. Nanocomposite foams with conductive fillers of 3-12 wt %, foaming agent of 12-18 wt %, foaming time of about 150-500 s, relative densities of 1.0-0.4 g/cm 3 were achieved, providing a scheme to evaluate the transformation of electrical properties with different foaming degree. It is worth noting that the product of AC agent concentration and foaming time reaches a certain value, and the highest electrical conductivity of foamed nanocomposites could be achieved. The nonmonotonicity changing of the electrical conductivity was demonstrated. Combined with the microtopography characterization, the cell growth effect was introduced to illustrate the transformation mechanism of the electrical conductivity. The relationship between the microcellular structure and the electrical conductivity of the foamed nanocomposites was established, which is essential for further optimizations of the foaming materials for the targeted application. (C) 2017 Wiley Periodicals, Inc.
机译:高度灵活和导电的石墨烯纳米颗粒/炭黑/硅橡胶(的GNP / CB / SR)系纳米复合材料泡沫体通过使用偶氮二甲酰胺(AC)物理发泡技术形成。发泡参数(发泡剂和发泡时间)进行分析,以调查对电特性和微孔结构的影响。的GNP / CB的/ SR纳米复合材料泡沫的电渗透阈值大约减小25%至30%,如通过发泡的体积膨胀而增加。纳米复合材料泡沫与3-12%(重量)的导电填料,12-18%(重量)发泡剂,约150-500小号发泡时间,1.0-0.4相对密度克/厘米3分别实现,提供一种方案来评估转化具有不同发泡度的电性能。值得一提的是,AC剂浓度和发泡时间的乘积达到一定值,并且可以实现发泡复合材料的最高导电率。的非单调性的导电性的变化的证明。与微地形特征相结合时,细胞生长的影响被引入以示出导电性的变换机构。微孔结构和发泡复合材料的导电率之间的关系成立,这是用于目标应用程序中的发泡材料的进一步的优化是必不可少的。 (c)2017 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号