...
首页> 外文期刊>Journal of Applied Polymer Science >Electrochemical hydrogen peroxide nanosensor using a reduced graphene oxide-poly(6-(4H-dithieno[3,2-b:2 ',3 '-d]pyrrol-4-yl)hexan-1-amine) hybrid-modified electrode
【24h】

Electrochemical hydrogen peroxide nanosensor using a reduced graphene oxide-poly(6-(4H-dithieno[3,2-b:2 ',3 '-d]pyrrol-4-yl)hexan-1-amine) hybrid-modified electrode

机译:使用氧化石墨烯 - 聚(6-(4H-二苯醚[3,2-B:2',3'-D)六烷-1-胺)六南-1-胺)杂交改性电极的电化学氢纳米传感器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The construction and biofunctionalization of graphene-based conjugated polymer nanocomposite that included reduced graphene oxide-poly DTP-NH2 hybrid-modified glassy carbon electrode (GCE) for the electrochemical H2O2 sensing were accomplished in this work. For the construction of the hydrogen peroxide bioassay, as an initial step of fabrication of the nanobiosensor, a novel conductive polymer structure was synthesized by the Suzuki-Miyaura coupling reaction and structural characterization was carried out by H-1-NMR and Mass spectroscopy techniques. Then, graphene oxide was chemically synthesized according to Hummers' method to expand the effective surface area to enhance the interaction between enzymes and conjugated polymers. This synthesized structure was assembled by an electrochemically polymerized conductive polymer with graphene oxide on a GCE. The modified glassy electrode surface was obtained by covalent bonding of the electrochemically polymerized DTP-NH2 with graphene oxide and coated on each well as biomimetic material. The structure and sensing properties of the nanosensing hybrid structure were investigated using UV-vis, AFM, SEM, and XRD. Thanks to the fast electron transfer at the poly(DTP-NH2)/rGO nanocomposite electrode interface, the developed biosensor exhibits a fast and linear amperometric response upon H2O2. Finally, a biosensor that is more selective and sensitive to H2O2 was developed. Also, the Poly(DTP-NH2)/rGO nanocomposite based Hydrogen Peroxide Nano sensor displayed excellent selectivity as well as good reproducibility and stability. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48538.
机译:在该工作中完成了包括降低的石墨烯氧化物 - 聚DTP-NH2杂化改性玻璃碳电极(GCE)的石墨烯的共轭聚合物纳米复合材料的构建和生物官能化是在这项工作中进行的电化学H2O2感测的。为了构建过氧化氢生物测定,作为制备纳米氧化物传感器的初始步骤,通过Suzuki-Miyaura偶联反应合成了一种新的导电聚合物结构,通过H-1-NMR和质谱技术进行结构表征。然后,根据悍者的方法化学合成石墨烯氧化物以扩展有效表面积以增强酶与共轭聚合物之间的相互作用。通过在GCE上用带有石墨烯的电化学聚合的导电聚合物组装该合成结构。通过将电化学聚合的DTP-NH 2与石墨烯的共价键合获得改性的玻璃状电极表面并涂覆在每个阱中作为仿生材料。使用UV-Vis,AFM,SEM和XRD研究纳米溶解杂交结构的结构和感测性能。由于Poly(DTP-NH2)/ RGO纳米复合电极接口的快速电子传递,所发育的生物传感器在H 2 O 2上表现出快速和线性的凹凸响应。最后,开发了一种对H2O2更具选择性和敏感的生物传感器。此外,聚(DTP-NH2)/ Rgo纳米复合材料的过氧化氢纳米传感器显示出优异的选择性和良好的再现性和稳定性。 (c)2019 Wiley期刊,Inc.J.Phill。聚合物。 SCI。 2019,136,48538。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号