...
首页> 外文期刊>Journal of Agricultural and Food Chemistry >Enzyme Shielding in a Large Mesoporous Hollow Silica Shell for Improved Recycling and Stability Based on CaCO3 Microtemplates and Biomimetic Silicification
【24h】

Enzyme Shielding in a Large Mesoporous Hollow Silica Shell for Improved Recycling and Stability Based on CaCO3 Microtemplates and Biomimetic Silicification

机译:大型介孔中空二氧化硅壳中的酶屏蔽,可改善基于CaCO3微直接和仿生硅化的再循环和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

We report a novel "anchor-shield" approach for synthesizing a yolk shell-structured biocatalytic system that consists of a phenylalanine ammonia lyase (PAL) protein particle core and a hollow silica shell with large mesopores by a combination of CaCO3 microtemplates and biomiinetic silicification. The method is established upon filling porous CaCO3 cores with PAL via co-precipitation, controlled self-assembly and polycondensation of silanes, cross-link of the PAL molecules, and subsequent CaCO3 dissolution. During this process, the self-assembled layer of cetyltrimethylammonium bromide served as a structure-directing agent of the mesostructure and directed the overgrowth of the mesostructured silica on the external surface of PAL/CaCO3 hybrid microspheres; after CaCO3 dissolution, the cross-linked PAL particles were encapsulated in the hollow silica shell. The hollow silica shell around the enzyme particles provided a "shield" to protect from biological, thermal, and chemical degradation for the enzyme. As a result, the recycling of the PAL enzyme was improved remarkably in comparison to adsorbed PAL on CaCO3. PAL particles with a hollow silica shell still retained 60% of their original activity after 13 cycles, whereas adsorbed PAL on CaCO3 microparticles lost activity after 7 cycles. Moreover, immobilized PAL exhibited higher stability against a proteolytic agent, denaturants, heat, and extreme pH than adsorbed PAL on CaCO3 microparticles. These results demonstrated that the "anchor shield" approach is an efficient method to obtain a stable and recycled biocatalyst with a yolk-shell structure.
机译:我们报告了一种新颖的“锚屏蔽”方法,用于合成蛋黄壳结构的生物催化系统,该系统由苯丙氨酸氨裂解酶(PAL)蛋白质颗粒核和中空二氧化硅壳组成,通过CaCO 3微直接和生物素硅化的组合具有大的中孔。通过通过共沉淀,受控的自组装和硅烷的缩聚,PAL分子的交联和随后的CaCO 3溶解,在用PAR填充多孔CaCO 3核心时建立该方法。在该方法期间,将自组装的甲烷基三甲基溴化铵层用作介思结构的结构 - 引导剂,并指向鲤属结构二氧化硅的过度生长在PAL / Caco3杂交微球的外表面上;在CaCO 3溶解之后,将交联的PAL颗粒包封在中空二氧化硅壳中。酶颗粒周围的中空二氧化硅壳提供了“屏蔽”,以保护酶的生物,热和化学降解。结果,与CaCO 3上吸附的PAL相比,PAL酶的再循环显着提高。具有中空二氧化硅壳的PAL颗粒在13次循环后仍然保留了它们的原始活性的60%,而CaCO3微粒上的吸附PAL在7个循环后丧失活性。此外,固定的PAL对蛋白水解剂,变性剂,热量和极端pH的稳定性较高,而不是CaCO 3微粒上的吸附PAL。这些结果表明,“锚屏蔽”方法是获得具有卵黄壳结构的稳定和再循环生物催化剂的有效方法。

著录项

  • 来源
  • 作者单位

    Tianjin Univ Sci &

    Technol Minist Educ Key Lab Ind Fermentat Microbiol Tianjin Econ &

    Technol Dev Area TEDA 29 13th Ave Tianjin 300457 Peoples R China;

    Tianjin Univ Sci &

    Technol Minist Educ Key Lab Ind Fermentat Microbiol Tianjin Econ &

    Technol Dev Area TEDA 29 13th Ave Tianjin 300457 Peoples R China;

    Tianjin Univ Sci &

    Technol Minist Educ Key Lab Ind Fermentat Microbiol Tianjin Econ &

    Technol Dev Area TEDA 29 13th Ave Tianjin 300457 Peoples R China;

    Tianjin Univ Sci &

    Technol Minist Educ Key Lab Ind Fermentat Microbiol Tianjin Econ &

    Technol Dev Area TEDA 29 13th Ave Tianjin 300457 Peoples R China;

    Tianjin Univ Sci &

    Technol Minist Educ Key Lab Ind Fermentat Microbiol Tianjin Econ &

    Technol Dev Area TEDA 29 13th Ave Tianjin 300457 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 营养卫生、食品卫生;农业科学;
  • 关键词

    hollow silica shell; enzyme immobilization; CaCO3 microtemplates; biomimetic silicification; stability;

    机译:中空二氧化硅壳;酶固定化;CaCO3微直接;仿生硅化;稳定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号