...
首页> 外文期刊>Surface & Coatings Technology >Effect of substrate bias on microstructure and mechanical properties of WC-DLC coatings deposited by HiPIMS
【24h】

Effect of substrate bias on microstructure and mechanical properties of WC-DLC coatings deposited by HiPIMS

机译:底物对HIPIMS沉积的WC-DLC涂层微观结构和力学性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The hardness and friction coefficient of the molding tools are the two key factors in influencing their performance during the cutting process. In this regard deposited by physical vapor deposition (PVD), WC-DLC nanocomposite hard coatings featuring high hardness and low friction coefficient are highly preferred to be used as protective coatings. As a newly developed PVD technology, high power impulse magnetron sputtering (HiPIMS) is quite advantageous in terms of the deposition of hard coatings. Substrate bias voltage exerts significant influences on the discharge characteristic of HiPIMS, plasma energy, chemical composition and the microstructure of the deposited coatings, which subsequently affect the coating's mechanical properties and performance in production. This article aims at investigating the effects of substrate bias on the plasma discharge characteristic of HiPIMS and on the mechanical properties, surface morphology, deposition rate, cross-sectional morphology, element concentration, crystal phase composition and tribological properties of the deposited coatings. The results show that the peak discharge current rises up from 57 A to 76 A with the increase of substrate bias from -40 V to -200 V. By controlling the bias voltage, WC-DLC coatings with different microstructures, mechanical properties and tribological properties have been produced. Meanwhile, the C concentrations of deposited coatings decline and the composed phase of the coating is transformed from hexagonal alpha-C at low bias voltage to equiaxial beta-WC1-x and then hexagonal beta-W2C accompanied by the rising bias voltage. The deposited WC-DLC coatings exhibit a decrease in surface roughness from Ra 16.1 nm to Ra 9.2 nm. Crystal phase evolutions also play a part in addition to the biased voltage upon the grain size and the hardness of the coating. It is found that the minimum grain size of 6 nm and the maximum hardness of 40.1 GPa appear at -160 V bias voltage when the coating is compose
机译:模塑工具的硬度和摩擦系数是在切割过程中影响其性能的两个关键因素。在这方面通过物理气相沉积(PVD)沉积,高度优选具有高硬度和低摩擦系数的WC-DLC纳米复合硬质涂料作为保护涂层。作为一种新开发的PVD技术,在硬涂层的沉积方面,高功率脉冲磁控溅射(Hipims)是非常有利的。衬底偏压电压对沉积涂层的升降件,等离子体能量,化学成分和微观结构的放电特性产生重大影响,随后影响涂层的机械性能和生产性能。本文旨在研究基质偏置对Hipims等离子体放电特性的影响,以及沉积涂层的沉积涂层的机械性能,表面形态,沉积速率,横截面形貌,元素浓度,晶体相组合物和摩擦学性质。结果表明,峰值放电电流从57A到76A增加到-40V至-200V的基板偏压增加。通过控制具有不同微观结构,机械性能和摩擦学特性的WC-DLC涂层。已经制作了。同时,沉积涂层的C浓度下降和涂层的组合阶段从低偏压α-C在低偏置电压下转化为等轴β-WC1-X,然后伴随着上升偏置电压的六边形β-W2C。沉积的WC-DLC涂层表现出从RA 16.1nm到Ra 9.2nm的表面粗糙度降低。除了晶粒尺寸和涂层的硬度时,晶相的进化也可以除了偏置电压之外的零件。结果发现,当涂层组成时,最小粒度为6nm和40.1GPa的最大硬度在-160V偏置电压下出现

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号