...
首页> 外文期刊>The Journal of Experimental Biology >Wings as inertia appendages: how bats recover from aerial stumbles
【24h】

Wings as inertia appendages: how bats recover from aerial stumbles

机译:翅膀作为惯性附属物:蝙蝠如何从空中绊倒恢复

获取原文
获取原文并翻译 | 示例

摘要

For many animals, movement through complex natural environments necessitates the evolution of mechanisms that enable recovery from unexpected perturbations. Knowledge of how flying animals contend with disruptive forces is limited, however, and is nearly nonexistent for bats, the only mammals capable of powered flight. We investigated perturbation recovery in Carollia perspicillata by administering a well-defined jet of compressed air, equal to 2.5 times bodyweight, which induced two types of disturbances, termed aerial stumbles: pitch-inducing body perturbations and roll-inducing wing perturbations. In both cases, bats responded primarily by adjusting extension of wing joints, and recovered pre-disturbance body orientation and left-right symmetry of wing motions over the course of only one wingbeat cycle. Bats recovered from body perturbations by symmetrically extending their wings cranially and dorsally during upstroke, and from wing perturbations by asymmetrically extending their wings throughout the recovery wingbeat. We used a simplified dynamical model to test the hypothesis that wing extension asymmetry during recovery from roll-inducing perturbations can generate inertial torques that alone are sufficient to produce the observed body reorientation. Results supported the hypothesis, and also suggested that subsequent restoration of symmetrical wing extension help to decelerate recovery rotation via passive aerodynamic mechanisms. During recovery, humeral elevation/depression remained largely unchanged while bats adjusted wing extension at the elbow and wrist, suggesting a proximo-distal gradient in the neuromechanical control of the wing.
机译:对于许多动物来说,通过复杂的自然环境的运动需要使机制的演变能够从意外扰动中恢复。然而,知识飞行动物如何与破坏性的力量有限,但蝙蝠几乎不存在,这是能够动力飞行的唯一哺乳动物。我们通过向Carollia Perspicillata施用型压缩空气明确的射流来研究扰动回收,等于2.5倍体重,该射流诱导了两种类型的扰动,称为空中腹部:诱导体内扰动和卷绕翼扰动。在这两种情况下,蝙蝠主要通过调节翼状接头的延伸,并在仅一个翼尾循环的过程中恢复缠绕的缠绕机身取向和左右对称的翼运动。通过对称延伸在上行程期间和背部之间的翅膀,从翼扰动在整个恢复的翼袋中延伸它们的翅膀来从身体扰动中恢复。我们使用了简化的动态模型来测试从滚动诱导扰动恢复期间的翼延伸不对称的假设可以产生单独的惯性扭矩,其单独的足以产生观察到的身体重新定位。结果支持假设,并且还建议随后恢复对称翼延伸有助于通过被动空气动力学机制减速恢复旋转。在恢复过程中,肱骨升降/凹陷仍然没有变化,而蝙蝠在肘部和手腕上调节翼延伸,则暗示在机翼的神经机械控制中的近端远端梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号