首页> 美国卫生研究院文献>PLoS Biology >Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia
【2h】

Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia

机译:风格下降:蝙蝠通过调节翼的惯性来执行复杂的空中旋转

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.
机译:飞行动物非凡的机动性源于其高度专业化的机翼的精确运动。蝙蝠已经发展出了令人印象深刻的控制飞行能力,这在很大程度上是由于蝙蝠能够通过许多独立控制的关节调节机翼的形状,面积和攻角。然而,蝙蝠翅膀也包含许多骨头和相对较大的肌肉,因此,蝙蝠的翅膀质量与它们的体重之比大于所有其他现存传单的比例。尽管蝙蝠翼的惯性通常与降低的空中机动性有关,但我们证明蝙蝠机动对这一概念提出了挑战。我们使用基于模型的跟踪算法来测量执行复杂的空中旋转的蝙蝠的机翼和身体运动学。使用只有六种运动自由度的蝙蝠的最小模型,我们证明了蝙蝠可以通过在拍打周期中选择性地缩回一只机翼来执行侧倾。我们还表明,这种机动不依赖于空气动力,而且果蝇几乎没有质量的机翼不会表现出这种作用。对于俯仰动作显示了相似的结果。最后,我们结合了降落和降落机动过程中机翼和身体运动的高分辨率运动学原理与蝙蝠的52自由度动力学模型相结合,表明机翼惯性调制在着陆和降落过程中重新定向蝙蝠方面起着主导作用下降操纵,空气动力的贡献最小。因此,蝙蝠可以将其翅膀用作多功能器官,能够提供以前在其他飞行动物中未曾见过的复杂的空气动力学和惯性动力学。这也可能对空中机器人车辆的控制产生影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号