首页> 外文期刊>Current Biology: CB >Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations
【24h】

Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations

机译:飞行肌肉招聘和翼旋转的调节使蜂鸟能够减轻空中卷扰动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Both biological and artificial fliers must contend with aerial perturbations that are ubiquitous in the outdoor environment. Flapping fliers are generally least stable but also most maneuverable around the roll axis, yet our knowledge of roll control in biological fliers remains limited. Hummingbirds are suitable models for linking aerodynamic perturbations to flight control strategies, as these small, powerful fliers are capable of remaining airborne even in adverse wind conditions. We challenged hummingbirds to fly within a steady, longitudinally (stream-wise) oriented vortex that imposed a continuous roll perturbation, measured wing kinematics and neuromotor activation of the flight muscles with synchronized high-speed video and electromyography and used computational fluid dynamics (CFD) to estimate the aerodynamic forces generated by observed wing motions. Hummingbirds responded to the perturbation with bilateral differences in activation of the main flight muscles while maintaining symmetry in most major aspects of wing motion, including stroke amplitude, stroke plane angle, and flapping frequency. Hummingbirds did display consistent bilateral differences in subtler wing kinematic traits, including wing rotation and elevation. CFD modeling revealed that asymmetric wing rotation was critical for attenuating the effects of the perturbation. The birds also augmented flight stabilization by adjusting body and tail posture to expose greater surface area to upwash than to the undesirable downwash. Our results provide insight into the remarkable capacity of hummingbirds to maintain flight control, as well as bio-inspiration for simple yet effective control strategies that could allow robotic fliers to contend with unfamiliar and challenging real-world aerial conditions.
机译:生物和人造飞行员都必须与户外环境中无处不在的空中扰动抗争。拍打圆锥形通常是最不稳定的,但也是最在卷轴周围最具可动性的,但我们对生物传单中的滚动控制的知识仍然有限。蜂鸟是合适的模型,用于将空气动力学扰动联系到飞行控制策略,因为这些小型强大的飞行员即使在不利的风条件下也能够剩余空气传播。我们挑战蜂鸟在稳定,纵向(流明智)定向涡旋中飞行,施加连续滚动扰动,测量的翼运动学和肌肉激活的飞行肌肉,具有同步的高速视频和肌电图和使用的计算流体动力学(CFD)估计观察到的翼运动产生的空气动力学力。蜂鸟响应了主要飞行肌肉激活的双侧差异的扰动,同时保持对称性在机翼运动的大多数主要方面,包括行程幅度,行程平面角度和拍摄频率。蜂鸟确实显示了底层翼运动特性的一致双边差异,包括翼旋转和高度。 CFD建模显示,不对称翼旋转对于减少扰动的影响至关重要。鸟类还通过调节身体和尾部姿势来增加飞行稳定,使更大的表面积暴露于挤压而不是不期望的洗涤。我们的结果提供了熟悉蜂鸟的显着容量,以维持飞行控制,以及简单但有效的控制策略的生物启发,可以允许机器人传单与不熟悉和具有挑战性的现实世界空中条件争夺。

著录项

  • 来源
    《Current Biology: CB》 |2020年第2期|共13页
  • 作者单位

    Univ New South Wales Sch Engn &

    Informat Technol Northcott Dr Canberra ACT 2612 Australia;

    Kanto Gakuin Univ Dept Mech Engn 1 Chome-50-1 Kanazawa Ward Yokohama Kanagawa 2368501 Japan;

    Univ Calif Davis Dept Neurobiol Physiol &

    Behav 155A Hutchison Hall Davis CA 95616 USA;

    Japan Agcy Marine Earth Sci &

    Technol JAMSTEC 2-15 Natsushimacho Yokosuka Kanagawa 2370061 Japan;

    Univ Calif Davis Dept Neurobiol Physiol &

    Behav 155A Hutchison Hall Davis CA 95616 USA;

    Chiba Univ Grad Sch Engn 1-33 Yayoicho Inage Ward Chiba 2638522 Japan;

    Harvard Univ Dept Organism &

    Evolutionary Biol 26 Oxford St Cambridge MA 02138 USA;

    Harvard Univ Dept Organism &

    Evolutionary Biol 26 Oxford St Cambridge MA 02138 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号