首页> 外文期刊>The Journal of Physiology >A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range
【24h】

A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range

机译:仿生蝇感光度模型阐明了随机自适应量抽样如何提供大动态范围

获取原文
获取原文并翻译 | 示例
           

摘要

Light intensities (photons s(-1) mu m(-2)) in a natural scene vary over several orders of magnitude from shady woods to direct sunlight. A major challenge facing the visual system is how to map such a large dynamic input range into its limited output range, so that a signal is neither buried in noise in darkness nor saturated in brightness. A fly photoreceptor has achieved such a large dynamic range; it can encode intensity changes from single to billions of photons, outperforming man-made light sensors. This performance requires powerful light adaptation, the neural implementation of which has only become clear recently. A computational fly photoreceptor model, which mimics the real phototransduction processes, has elucidated how light adaptation happens dynamically through stochastic adaptive quantal information sampling. A Drosophila R1-R6 photoreceptor's light sensor, the rhabdomere, has 30,000 microvilli, each of which stochastically samples incoming photons. Each microvillus employs a full G-protein-coupled receptor signalling pathway to adaptively transduce photons into quantum bumps (QBs, or samples). QBs then sum the macroscopic photoreceptor responses, governed by four quantal sampling factors (limitations): (i) the number of photon sampling units in the cell structure (microvilli), (ii) sample size (QB waveform), (iii) latency distribution (time delay between photon arrival and emergence of a QB), and (iv) refractory period distribution (time for a microvillus to recover after a QB). Here, we review how these factors jointly orchestrate light adaptation over a large dynamic range.
机译:光强度(光子S(-1)微米(-2))在自然场景在从背阴树林阳光直射几个数量级变化。面临的视觉系统的主要挑战是如何映射这样一个大的动态输入范围到其有限的输出范围,以使得信号既不是埋在黑暗噪声也没有亮度饱和。苍蝇感光体已达到这样一个大的动态范围;它可以编码来自单一强度变化到数十亿的光子,表现优于人造光传感器。这种性能需要强大的光适应,神经执行当中才变得清晰最近。甲计算蝇感光体模型,其模仿真实光转导过程,已经阐明光适应动态如何发生的通过随机自适应量子信息采样。果蝇R1-R6感光体的光传感器,所述rhabdomere,具有30000个微绒毛,其每一个随机样品入射的光子。每个微绒毛采用全G蛋白偶联受体信号转导途径以自适应地转导到的光子量子凸块(QBS,或样本)。 QBS再总结宏观感光体的反应,由四个量子采样因子(限制)控制:(ⅰ)中的单元结构的光子采样单元(微绒毛)的数量,(ⅱ)样品大小(QB波形),(ⅲ)的延迟分布,和(iv)不应期分布(光子到达和QB的出现之间的时间延迟)(时间为一微绒毛一个QB后恢复)。在这里,我们回顾一下这些因素共同协调在大动态范围光适应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号