首页> 外文OA文献 >A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range
【2h】

A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range

机译:仿生飞行光感受器模型阐明了随机自适应量子采样如何提供大的动态范围

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Light intensities (photons/s/um2) in a natural scene vary over several orders of magnitudeudfrom shady woods to direct sunlight. A major challenge facing the visual system is how to map such audlarge dynamic input range to its limited output range, so that signal is neither buried into noise inuddarkness and nor saturated in brightness. A fly photoreceptor has achieved such a large dynamicudrange; it can encode intensity changes from single photons to billions more, outperforming man-madeudlight sensors. This performance requires powerful light-adaptation, the neural implementation ofudwhich has only become clearer recently. A computational fly photoreceptor model, which mimics theudreal phototransduction processes, has elucidated how light adaptation happens dynamically throughudstochastic adaptive quantal information sampling. A Drosophila R1-R6 photoreceptor’s light-sensor, theudrhabdomere, has 30,000 microvilli, each of which stochastically samples incoming photons. Eachudmicrovillus employs a full G-protein-coupled-receptor (GPCR) signalling pathway to adaptivelyudtransduce photons into quantum bumps (QBs, or samples). QBs then sum up the macroscopicudphotoreceptor responses, governed by four quantal sampling factors (limitations): (1) the number ofudphoton sampling units in the cell structure (microvilli); (2) sample size (QB waveform); (3) latencyuddistribution (time delay between photon arrival to emergence of a QB), and (4) refractory perioduddistribution (time for a microvillus to recover after a QB). Here, we review how these factors jointlyudorchestrate light adaptation over a large dynamic range.
机译:从阴凉的树林到直射的阳光,自然场景中的光强度(光子/秒/微米2)在几个数量级上变化。视觉系统面临的主要挑战是如何将如此大的动态输入范围映射到其有限的输出范围,以使信号既不会被暗处的噪声所掩盖,又不会被亮度所饱和。苍蝇感光器实现了如此大的动态范围。它可以编码从单光子到数十亿个强度变化的强度变化,性能优于人造 udlight传感器。这种性能需要强大的光线适应能力, ud的神经实现直到最近才变得更加清晰。模仿超现实的光转导过程的计算蝇感光体模型已经阐明了如何通过随机的自适应量化信息采样动态地进行光适应。果蝇R1-R6感光器的光传感器 udrhabdomere具有30,000微绒毛,每个微绒毛都随机采样入射的光子。每个 udmicrovillus都采用完整的G蛋白偶联受体(GPCR)信号通路,将光子适应性 udduced到量子隆起(QB,或样品)中。然后,QB总结宏观的 udphotoreceptor响应,受四个定量采样因子(限制)控制:(1)细胞结构(微绒毛)中的 udphoton采样单位的数量; (2)样本量(QB波形); (3)潜伏期 ud分布(光子到达到QB出现之间的时间延迟),和(4)不应期 ud分布(微绒毛在QB之后恢复的时间)。在这里,我们回顾了这些因素如何共同/协调大动态范围内的光适应。

著录项

  • 作者

    Song Z.; Juusola M.I.;

  • 作者单位
  • 年度 100
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号