首页> 外文期刊>Frontiers in Computational Neuroscience >Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling
【24h】

Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling

机译:随机光子吸收模型阐明了量子采样如何实现蝇类感光体的早期增益控制

获取原文
           

摘要

Many diurnal photoreceptors encode vast real-world light changes effectively, but how this performance originates from photon sampling is unclear. A 4-module biophysically-realistic fly photoreceptor model, in which information capture is limited by the number of its sampling units (microvilli) and their photon-hit recovery time (refractoriness), can accurately simulate real recordings and their information content. However, sublinear summation in quantum bump production (quantum-gain-nonlinearity) may also cause adaptation by reducing the bump/photon gain when multiple photons hit the same microvillus simultaneously. Here, we use a Random Photon Absorption Model (RandPAM), which is the 1st module of the 4-module fly photoreceptor model, to quantify the contribution of quantum-gain-nonlinearity in light adaptation. We show how quantum-gain-nonlinearity already results from photon sampling alone. In the extreme case, when two or more simultaneous photon-hits reduce to a single sublinear value, quantum-gain-nonlinearity is preset before the phototransduction reactions adapt the quantum bump waveform. However, the contribution of quantum-gain-nonlinearity in light adaptation depends upon the likelihood of multi-photon-hits, which is strictly determined by the number of microvilli and light intensity. Specifically, its contribution to light-adaptation is marginal (≤1%) in fly photoreceptors with many thousands of microvilli, because the probability of simultaneous multi-photon-hits on any one microvillus is low even during daylight conditions. However, in cells with fewer sampling units, the impact of quantum-gain-nonlinearity increases with brightening light.
机译:许多昼夜光感受器可以有效地编码大量的现实世界的光变化,但是这种性能如何源自光子采样尚不清楚。 4模块的生物物理现实飞行感光器模型可以精确模拟真实记录及其信息内容,该模型中的信息捕获受采样单位(微绒毛)的数量及其光子恢复时间(耐火度)的限制。但是,当多个光子同时击中同一微绒毛时,量子碰撞产生中的亚线性求和(量子增益非线性)也可能通过降低碰撞/光子增益来引起自适应。在这里,我们使用随机光子吸收模型(RandPAM)(它是4模蝇感光体模型的第一个模子)来量化量子增益非线性在光适应中的作用。我们展示了量子增益非线性是如何仅由光子采样引起的。在极端情况下,当两个或多个同时发生的光子击中减少到单个亚线性值时,在光转导反应适应量子突波波形之前会预先设置量子增益非线性。然而,量子增益非线性在光适应中的贡献取决于多光子命中的可能性,这由微绒毛的数量和光强度严格决定。特别是,在具有成千上万个微绒毛的蝇类感光体中,它对光适应的贡献很小(≤1%),因为即使在白天,任何一个微绒毛上同时发生多光子命中的可能性也很低。但是,在具有较少采样单位的单元中,量子增益非线性的影响随着光的增亮而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号