...
首页> 外文期刊>The Journal of Physiology >Evidence that distinct human primary motor cortex circuits control discrete and rhythmic movements
【24h】

Evidence that distinct human primary motor cortex circuits control discrete and rhythmic movements

机译:证据表明,不同的人力初级电机皮质电路控制离散和节律运动

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Key points Discrete and rhythmic dynamics are inherent components of (human) movements. We provide evidence that distinct human motor cortex circuits contribute to discrete and rhythmic movements. Excitability of supragranular layer circuits of the human motor cortex was higher during discrete movements than during rhythmic movements. Conversely, more complex corticospinal circuits showed higher excitability during rhythmic movements than during discrete movements. No task‐specific differences existed for corticospinal output neurons at infragranular layers. The excitability differences were found to be time(phase)‐specific and could not be explained by the kinematic properties of the movements. The same task‐specific differences were found between the last cycle of a rhythmic movement period and ongoing rhythmic movements. Abstract Human actions entail discrete and rhythmic movements (DM and RM, respectively). Recent insights from human and animal studies indicate different neural control mechanisms for DM and RM, emphasizing the intrinsic nature of the task. However, how distinct human motor cortex circuits contribute to these movements remains largely unknown. In the present study, we tested distinct primary motor cortex and corticospinal circuits and proposed that they show differential excitability between DM and RM. Human subjects performed either 1) DM or 2) RM using their right wrist. We applied an advanced electrophysiological approach involving transcranial magnetic stimulation and peripheral nerve stimulation to test the excitability of the neural circuits. Probing was performed at different movement phases: movement initiation (MI, 20?ms after EMG onset) and movement execution (ME, 200?ms after EMG onset) of the wrist flexion. At MI, excitability at supragranular layers was significantly higher in DM than in RM. Conversely, excitability of more complex corticospinal circuits was significantly lower in DM than RM at ME. No task‐specific differences were found for direct corticospinal output neurons at infragranular layers. The neural differences could not be explained by the kinematic properties of the movements and also existed between ongoing RM and the last cycle of RM. Our results therefore strengthen the hypothesis that different neural control mechanisms engage in DM and RM.
机译:关键点离散和节奏动力学是(人类)运动的固有组成部分。我们提供了证据表明,不同的人机皮质电路有助于离散和节奏的运动。在离散运动期间,在基于节奏运动期间,人机皮质的Supragranular层电路的兴奋性较高。相反,更复杂的皮质脊髓电路在节奏运动期间比在离散运动期间显示出更高的兴奋性。没有针对图形层的皮质脊髓输出神经元存在特异性特异性差异。发现兴奋性差异是时间(相位) - 特异性,不能通过运动的运动学性质来解释。在节奏运动时期的最后一个周期和正在进行的节奏运动之间发现了相同的特定任务差异。摘要人类行为需要离散和节奏的运动(DM和RM)。人类和动物研究的最近见解表明DM和RM的不同神经控制机制,强调了任务的内在性质。然而,不同的人类电机皮质电路对这些运动有所贡献的贡献仍然很大程度上是未知数。在本研究中,我们测试了不同的主要电机皮层和皮质脊髓电路,并提出了它们在DM和RM之间显示差异兴奋性。人类受试者使用右手腕进行1)DM或2)RM。我们应用了涉及经颅磁刺激和周围神经刺激的先进电生理方法,以测试神经电路的兴奋。探测在不同的运动阶段进行:运动启动(MI,20?MS在EMG发作后的MI)和移动执行(ME,EMG发作后的200·MS)的运动屈曲。在MI,Supragranular层的兴奋性在DM中显着高于RM。相反,更复杂的皮质脊髓电路的兴奋性在DM对我的RM显着降低。没有发现特异性差异,用于对图形层的直接皮质脊髓输出神经元。无法通过运动的运动学特性来解释神经差异,并且在正在进行的RM和RM的最后周期之间也存在。因此,我们的结果加强了不同的神经控制机制从DM和RM接合的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号