...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Electronic Structure and Charge Transfer in the TiO2 Rutile (110)/Graphene Composite Using Hybrid DFT Calculations
【24h】

Electronic Structure and Charge Transfer in the TiO2 Rutile (110)/Graphene Composite Using Hybrid DFT Calculations

机译:使用混合DFT计算的TiO2金红石(110)/石墨烯复合材料中的电子结构和电荷转移

获取原文
获取原文并翻译 | 示例

摘要

Composite systems of TiO2 with nanocarbon materials, such as graphene, graphene oxide, and carbon nanotubes, have proven to be efficient photocatalyst materials. However, a detailed understanding of their electronic structure and the mechanisms of the charge transfer processes is still lacking. Here, we use hybrid density functional theory calculations to analyze the electronic properties of the ideal rutile (110)-graphene interface, in order to understand experimentally observed trends in photoinduced charge transfer. We show that the potential energy surface of pristine graphene physisorbed above rutile (110) is relatively flat, enabling many possible positions of graphene above the rutile (110) surface. We verify that tensile and compressive strain has a negligible effect on the electronic properties of graphene at low levels of strain. By analyzing the band structure of this composite material and the composition of the valence and conduction band edges, we show that both the highest occupied states and the lowest unoccupied states of this composite are dominated by graphene, and that there is also a significant contribution of Ti orbitals to the two lowest unoccupied bands. We suggest that a transition from graphene-dominated occupied bands to mixed graphene and TiO2-based unoccupied bands is responsible for the experimentally observed photoinduced charge transfer from graphene to TiO2 under visible light irradiation; however, the most stable state for an excess (e.g., photoexcited) electron is localized on the carbon orbitals, which make up the lowest-energy conduction band. This separation of photogenerated electrons and holes makes TiO2-graphene an efficient photocatalyst material.
机译:纳米碳材料的TiO 2复合系统,如石墨烯,氧化烯氧化物和碳纳米管,已被证明是有效的光催化剂材料。然而,对其电子结构的详细了解和电荷转移过程的机制仍然缺乏。在这里,我们使用混合密度泛函理论计算来分析理想金红石(110)型界面的电子性质,以便了解通过实验观察到光引导电荷转移的趋势。我们表明,原始石墨烯的潜在能量表面吸收的金红石(110)相对平坦,在金红石(110)表面上方的石墨烯具有许多可能的位置。我们确认拉伸和压缩菌株对石墨烯的电子性质在低水平的菌株中具有可忽略不计的影响。通过分析该复合材料的带结构和价和导带边缘的组成,我们表明,该复合材料的最高占用状态和最低的未占用状态都是由石墨烯主导的,并且还存在显着的贡献Ti轨道到两个最低的未占用乐队。我们建议从石墨烯主导的占用带向混合石墨烯和基于TiO 2的未占用带的过渡负责在可见光照射下从石墨烯到TiO 2的实验观察到的光诱导电荷转移;然而,过量(例如,光曝)电子的最稳定状态是碳轨道上的局部化,该碳轨道构成最低能量导带。这种光发生的电子和孔的分离使得TiO 2-石墨烯是有效的光催化剂材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号