首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Effect of Surface Trap States on Photocatalytic Activity of Semiconductor Quantum Dots
【24h】

Effect of Surface Trap States on Photocatalytic Activity of Semiconductor Quantum Dots

机译:表面捕集状态对半导体量子点光催化活性的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Semiconductor quantum dots (QDs) are promising photocatalysts for water splitting due to the large specific area, but the influence of surface trap states on the photocatalytic activity of QDs is still not fully understood yet. To answer this question, CdSe QDs with the same morphology, diameter, crystal structure, and energy level are prepared following a hydrazine hydrate (N2H4) promoted synthesis strategy and conventional hydrothermal synthesis method. Through various characterizations and analysis, it is found that the conventional hydrothermal synthesized CdSe QDs (H-CdSe QDs) have a high concentration of Cd-involved shallow electron trap states, which seriously hinder the charge separation and transfer between CdSe and cocatalysts. In contrast, the N2H4 promoted synthesis strategy provides an energy-saving, low-cost, and facile pathway to eliminate the surface shallow electron traps, ensuring an efficient charge separation and H-2 production in CdSe QDs. As a result, the N2H4-promoted synthesized CdSe QDs (N-CdSe QDs) produce 44.5 mL (1998 mu mol) H-2 in 7 h, roughly 1.6 times higher than that of H-CdSe QDs (27.5 mL, 1236 mu mol). Because the surface trap states are widespread in semiconductor QDs, it is believed that our study provides valuable guidance on the design and preparation of QDs for photocatalysis.
机译:半导体量子点(QDS)是由于特定区域的较大面积的水分裂的光催化剂,但尚未完全理解表面捕集状态对QDS光催化活性的影响。为了回答这个问题,在肼水合物(N2H4)促进的合成策略和常规水热合成方法后,制备具有相同形态,直径,晶体结构和能量水平的CDSE QD。通过各种特征和分析,发现常规的水热合成CdSe QDS(H-CDSE QDS)具有高浓度的CD涉及浅电子捕集状态,这严重阻碍了CDSE和助催化剂之间的电荷分离和转移。相反,N2H4促进的合成策略提供了节能,低成本和容易途径,以消除表面浅电子疏水阀,确保在CDSE QDS中有效的电荷分离和H-2产生。结果,N 2 H 4促进的合成CDSE QDS(N-CDSE QDS)在7小时内产生44.5mL(1998μmmol)H-2,比H-CDSE QDS(27.5ml,1236μmmol)高出1.6倍)。由于表面陷阱状态在半导体QD中普及,因此我们的研究提供了对光电催化QDS的设计和制备提供有价值的指导。

著录项

  • 来源
  • 作者单位

    Jilin Univ State Key Lab Supramol Struct &

    Mat Changchun 130012 Jilin Peoples R China;

    Jilin Univ State Key Lab Supramol Struct &

    Mat Changchun 130012 Jilin Peoples R China;

    Jilin Univ Inst Atom &

    Mol Phys Changchun 130012 Jilin Peoples R China;

    Konkuk Univ Dept Chem 120 Neungdong Ro Seoul 05029 South Korea;

    Jilin Univ Inst Atom &

    Mol Phys Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Phys Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Phys Changchun 130012 Jilin Peoples R China;

    Jilin Univ State Key Lab Supramol Struct &

    Mat Changchun 130012 Jilin Peoples R China;

    Jilin Univ State Key Lab Supramol Struct &

    Mat Changchun 130012 Jilin Peoples R China;

    Jilin Univ State Key Lab Supramol Struct &

    Mat Changchun 130012 Jilin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号