首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Dispersed Solid Conductors: Fast Interfacial Li-Ion Dynamics in Nanostructured LiF and LiF:gamma-Al2O3 Composites
【24h】

Dispersed Solid Conductors: Fast Interfacial Li-Ion Dynamics in Nanostructured LiF and LiF:gamma-Al2O3 Composites

机译:分散的固体导体:纳米结构LiF和LiF中的快速界面锂离子动力学:γ-Al2O3复合材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Lithium fluoride serves as a model substance to study Li and F hopping processes in a material solely composed of mobile ions with an opposite charge. In its microcrystalline form, it is known to be a very poor ionic conductor. Here, we tried to boost ion dynamics in LiF by taking advantage of size effects and the introduction of structural disorder. Compared to micro-LiF, we observed an increase of the ion conductivity by 2 orders of magnitude for nanocrystalline LiF prepared by high-energy ball milling. A further boost might be achieved in nanocrystalline two-phase systems consisting of LiF and an insulator, such as amphoteric gamma-Al2O3. In such dispersed ionic conductors, percolating conductor/insulator pathways are anticipated enabling the ions to move quickly over long distances. Indeed, for nano-LiF:Al2O3, another drastic increase of ionic conductivity by 3 orders of magnitude (393 K) is achieved by interface engineering. The activation energy characterizing long-range ion transport is reduced from 0.98 eV (nanocrystalline LiF) to 0.79 eV for (LiF)(0.86)(Al2O3)(0.14). Li-7 nuclear magnetic resonance (NMR) measurements showed that Li+ is mainly responsible for this increase seen for nano-LiF:Al2O3. Al-27 magic angle spinning NMR revealed that pentacoordinated Al species act as anchor sites for F- anions (and Li+). This mechanism is assumed to lead to a 3D network of fast Li+ diffusion pathways along the conductor/insulator interfaces.
机译:氟化锂用作研究Li和F跳水的模型物质,仅由具有相反电荷的移动离子组成的材料。在其微晶形式中,已知是一种非常差的离子导体。在这里,我们通过利用尺寸效应和结构性障碍引入来提高LIF中的离子动力学。与微生物相比,我们观察到通过高能量球磨制备的纳米晶体的2个级的离子电导率的增加。在由LiF和绝缘体组成的纳米晶体两相系统中可以实现进一步的升压,例如两性γ-Al2O3。在这种分散的离子导体中,预期渗透导体/绝缘体途径使离子能够快速地移动长距离。实际上,对于纳米LiF:Al 2 O 3,通过接口工程实现3次数量级(393 k)的离子电导率的另一个急剧增加。将远程离子转运的活化能量从0.98eV(纳米晶LiF)降低至0.79eV(LiF)(0.86)(Al 2 O 3)(0.14)。 Li-7核磁共振(NMR)测量表明,Li +主要负责纳米LiF的这种增加:Al2O3。 Al-27魔法角旋转NMR显示,五边形的Al物种充当F-阴离子(和Li +)的锚位点。假设该机制导致沿导体/绝缘体接口的快速Li +扩散路径的3D网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号