...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Nanoparticle Formation Kinetics and Mechanistic Studies Important to Mechanism-Based Particle-Size Control: Evidence for Ligand-Based Slowing of the Autocatalytic Surface Growth Step Plus Postulated Mechanisms
【24h】

Nanoparticle Formation Kinetics and Mechanistic Studies Important to Mechanism-Based Particle-Size Control: Evidence for Ligand-Based Slowing of the Autocatalytic Surface Growth Step Plus Postulated Mechanisms

机译:基于机制的粒度控制重要性的纳米粒子形成动力学和机械研究:自催化表面生长的基于配体的速度速度的证据加上假设机制

获取原文
获取原文并翻译 | 示例
           

摘要

Ligands are known to affect the formation, stabilization, size, and size-dispersion control of transition-metal and other nanoparticles, yet the kinetic and mechanistic basis for such ligand effects remains to be elucidated and then coupled to predictions for improved particle size and narrower particle size distribution syntheses. Toward this broad goal, the effect of the added excess ligand (L) and the stabilizer, L = POM9- (= the polyoxometalate, P2W15Nb3O629-) is studied for the formation of POM9--stabilized Ir(0)(n) nanoparticles, {Ir(0)(n)center dot(POM9-)(m)}(9m-), synthesized from an atomically characterized precatalyst (COD)Ir center dot POM8- under H-2. First, the balanced reaction stoichiometry and characterization of the nanoparticle products are established. Next, the kinetics of nanoparticle formation is analyzed initially by the FW 2-step minimum mechanism consisting of slow, continuous nucleation, A -> B (rate constant k(1obs)), and autocatalytic surface growth, A + B -> 2B (rate constant k(2obs)) where A is nominally (COD)Ir center dot POM8- and B is nominally the growing, average {Ir(0)(n)center dot(POM9-)(m)}(9m-) nanoparticle. The autocatalytic surface growth rate constant, k(2obs), was then studied as a function of the amount of added POW9-. An inverse, quadratic-root-type dependence of k(2obs), on the concentration of L = POM9- is observed, which was then analyzed in terms of two main mechanisms. Specifically, the dependence of k(2obs), on the [POM9-] was analyzed in terms of (i) an A center dot L (sic) A + L dissociative equilibrium, (COD)Ir-I center dot POM8- + 2 solvent (sic) (COD)Ir-I(solv)(2)(+) + POM9-, and then (ii) this same A center dot L (sic) A + L plus also a B + L (sic) B center dot L nanoparticle-surface capping equilibrium, where B represents the average Ir(0)(n) nanoparticle. Three other mechanisms were also considered. The high-resolution transmission electron microscopy of the parent nanoparticles when no excess POM9- has been added is also provided as part of the Supporting Information. The results (a) provide the first evidence and resultant physical insight, for the prototype, well-studied {Ir(0)(n)center dot(POM9-)(m)}(9m-) nanoparticle formation system, that growth is a function of the amount of POM9- ligand present and (b) provide compelling evidence that A = (COD)Ir-I(solv)(2)(+) from the A center dot L dissociative equilibrium, (COD)Ir-I center dot POM8- + 2 solvent = (COD)Ir-I(solv)(2)(+) + POM9-, is the actual reactant in the FW 2-step formulation of the A + B -> 2B autocatalytic growth step. The results also (c) support the 1-step more complex mechanism that adds a ligand-capping B + L (sic) B center dot L step, namely, the mechanism consisting of the steps of A center dot L (sic) A + L, then A -> B, then A + B -> 2B, and then B + L (sic )B center dot L. Given the wide usage of the simpler FW 2-step mechanism, plus the fact that nanoparticle-stabilizing and -capping ligands are invariably present, one can anticipate a much broader applicability of mechanisms containing the A center dot L (sic) A + L and the B + L (sic) B center dot L steps to nanoparticle formation reactions.
机译:已知配体会影响过渡金属和其他纳米颗粒的形成,稳定,尺寸和大小 - 分散控制,但​​这种配体效应的动力学和机械基础仍然待阐明,然后耦合到改善粒度和更窄的预测粒度分布合成。朝向这种宽泛的目标,研究了添加过量的配体(L)和稳定剂,L = POM9-(=聚氧化膦,P2W15NB3O629-)的作用,用于形成POM9 - 稳定的IR(N)纳米颗粒, {Ir(0)(n)中心点(POM9 - )(M)(m)}(9m-),由原子表征的预催化剂(COD)IR中心点POM8-合成H-2。首先,建立平衡反应化学计量和纳米颗粒产物的表征。接下来,最初通过由缓慢,连续成核,A - > B(速率常见K(10Ob))和自催化表面生长,A + B - > 2B(速率常数k(2obs))其中A名义(COD)IR中心点POM8和B名义上是生长,平均{IR(0)(N)中心点(POM9 - )(M)}(9M-)纳米颗粒。然后研究了自催化表面生长速率常数K(2Obs),作为添加的POW9-的量。观察到L = POM9-浓度的K(2Obs)的逆,二次根型依赖性,然后根据两个主要机制分析。具体地,在(i)的依次分析K(2obs)的依赖性(i)A中心点L(SiC)A + L离菌平衡,(COD)IR-I中心点POM8- + 2,分析了[POM9-]的依赖性溶剂(SiC)(COD)IR-I(SOLV)(2)(+)+ POM9-,然后(II)相同的中心点L(SiC)A + L Plus也是B + L(SiC)B.中心点L纳米粒子表面封端平衡,其中B表示平均IR(0)(n)纳米颗粒。还考虑了其​​他三种机制。当没有添加过量的POM9-时,还提供了母纳米粒子的高分辨率透射电子显微镜,作为支持信息的一部分。结果(a)提供第一个证据和结果物理洞察,用于原型,研究良好的{IR(0)(n)中心点(POM9 - )(M)}(9m-)纳米粒子形成系统,即生长存在的POM9-配体的函数和(b)提供令人信服的证据,即A =(COD)IR-I(SOLV)(2)(2)(2)(+)来自中心点L离灭平衡,(COD)IR-1中心点POM8- + 2溶剂=(COD)IR-I(SOLV)(2)(+)+ POM9-是A + B - > 2B自催化生长步骤的FW 2步制剂中的实际反应物。结果还支持(c)支持1步更复杂的机制,其添加配体 - 封端B + L(SiC)B中心点L步骤,即由中心点L(SiC)A +的步骤组成的机构l,然后a - > b,然后是a + b - > 2b,然后是b + l(siC)b中心点L.鉴于更简单的FW 2步机制的广泛使用,加上纳米粒子稳定和稳定的事实 - 映射配体总是存在,可以预测含有中心点L(SiC)A + L和B + L(SiC)B中心L1的机制的更广泛适用性至纳米颗粒形成反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号