...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Ultrafast Photocurrent and Absorption Microscopy of Few-Layer Transition Metal Dichalcogenide Devices That Isolate Rate-Limiting Dynamics Driving Fast and Efficient Photoresponse
【24h】

Ultrafast Photocurrent and Absorption Microscopy of Few-Layer Transition Metal Dichalcogenide Devices That Isolate Rate-Limiting Dynamics Driving Fast and Efficient Photoresponse

机译:少数过渡金属二甲基化物装置的超快光电流和吸收显微镜,其隔离速率限制动力学驾驶快速高效的光响应

获取原文
获取原文并翻译 | 示例
           

摘要

Despite inherently poor interlayer conductivity, photodetectors made from few-layer stacked 2D transition metal dichalcogenides (TMDs) such as WSe2 and MoS2 often yield a desirable fast (less than or similar to similar to 90 ps) and efficient (epsilon > similar to 40%) photocurrent response. To unambiguously separate the competing electronic escape and recombination rates, we combine ultrafast photocurrent (U-PC) and transient absorption (TA) microscopy methods. U-PC and TA kinetics obtained on WSe2 photodetectors yield matching interlayer electronic escape times that accelerated from similar to 1.6 ns to 86 ps with the applied E-field. These ultrafast rates predict the actual device PC efficiencies realized of 40-45%. The roughly linearly increasing electronic escape rates with applied voltage in TA and U-PC decay kinetics both give out-of-plane electron and hole mobilities of 0.129 and 0.031 cm(2)/(V s), respectively, in WSe2. Above similar to 10(12) photons/cm(2) incident flux, defect-assisted Auger scattering greatly lowers the efficiency by trapping carriers at vacancy defects. Both TA and PC spectra identify a metal vacancy subgap peak with 5.6 ns lifetime as one primary trap capturing carriers as they drift between layers. TA and U-PC microscopy independently provide the kinetics of electronic escape and recombination that determine PC device efficiency. For few-layer TMD devices, this simple rate law further predicts the observed nonlinear in PC dependence over a 10(5) range of incident power.
机译:尽管层间导电性具有固有差,但是由几层堆叠的2D过渡金属二甲硅烷(TMDS)制成的光电探测器,例如WSE2和MOS2通常通常产生优选的快速(小于或类似于类似于90 ps)和有效的(ε>类似于40% )光电流反应。为了毫不含糊地分离竞争的电子逃生和重组率,我们将超快光电流(U-PC)和瞬态吸收(TA)显微镜方法结合起来。在WSE2光电探测器上获得的U-PC和TA动力学产生匹配的中间层电子逃生时间,其与所施加的电子字段加速到1.6ns至86 ps。这些超快速率预测实际设备的PC效率为40-45%。在TA和U-PC衰减动力学中的施加电压大致线性增加的电子逃逸速率均可在WSE2中产生0.129和0.031cm(2)/(2)/(v s)的平面外电子和孔迁移率。上面类似于10(12)个光子/ cm(2)入射通量,缺陷辅助螺旋轨道散射极大地降低了空位缺陷时捕获载体的效率。 TA和PC光谱都识别金属空位沉积峰,其寿命为5.6 ns寿命,因为它们在层之间漂移时捕获载体。 TA和U-PC显微镜可独立地提供电子逃生和重组的动力学,确定PC器件效率。对于几层TMD器件,这种简单的速率法进一步预测了PC依赖性的观察到的非线性,在10(5)范围内的入射力范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号