...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Roughness Factor-Dependent Transport Characteristic of Shale Gas through Amorphous Kerogen Nanopores
【24h】

Roughness Factor-Dependent Transport Characteristic of Shale Gas through Amorphous Kerogen Nanopores

机译:通过无定形Kerogen纳米孔的页岩气的粗糙因子依赖性传输特性

获取原文
获取原文并翻译 | 示例
           

摘要

In the past decades, shale gas has been recognized as the promising unconventional resource for global energy storage, and a clear understanding of the gas-transport characteristic within nonporous shale organic matter (i.e., kerogen) is fundamental for the effective development of shale reservoirs. In this regard, previous studies were generally conducted based on the ideally smooth nanochannels (e.g., graphite slit or tube) without considering the atomistic-scale roughness of the walls. Herein, using molecular dynamics (MD) simulations, we perform a systematical investigation on the gas-transport characteristic through amorphous organic nanopores constructed by realistic kerogen molecules. The results show that the gas-transport velocity in amorphous organic nanopores drops dramatically (40, 70, and 90%) only with tiny roughness factors (0.3, 0.6, and 1.2%) when compared with ideally smooth nanochannels. Further analysis of the potential energy surface and the particle trajectory justifies the entirely different gas-transport mechanisms in ideally smooth (surface diffusion) and relative rough (viscosity diffusion) organic nanopores. Besides, based on the insights of numerous MD simulations (pore sizes: 3-9 nm and system pressures: 5-50 MPa), a new analytical model that is able to consider the key effect of roughness factor on gas transport in organic-rich shale is developed, which is well verified with the experimental results. It is particularly found that the gas-transport capacity in organic-rich shale (similar to 1 nm of slippage length) would be enormously overrated as much as 2 orders of magnitude by the traditional cognition based on ideally smooth nanopores (similar to 100 nm of slippage length).
机译:在过去的几十年中,页岩气已被认为是全球能量储存的有前途的不传统资源,并清楚地了解无孔页岩有机物质(即,Kerogen)内的燃气运输特性是页岩储层的有效发展的基础。在这方面,通常基于理想的平滑纳米(例如,石墨狭缝或管)进行先前的研究,而不考虑壁的原子刻度粗糙度。这里,使用分子动力学(MD)仿真,我们通过现实Kerogen分子构成的无定形有机纳米孔对气体传输特性进行系统调查。结果表明,与理想光滑的纳米控制相比,无定形有机纳米孔中的气体输送速度仅均显着(40,70和90%)(0.3,0.6和1.2%)。进一步分析潜在能量表面和粒子轨迹在理想地平滑(表面扩散)和相对粗糙(粘度扩散)有机纳米孔中的完全不同的气体传输机制证明了完全不同的气体传输机制。此外,基于大量MD模拟的见解(孔尺寸:3-9 nm和系统压力:5-50兆帕),一个新的分析模型,该模型能够考虑在粗糙度因子对气体传输的关键效果有机 - 富Sape是开发的,验证了实验结果。特别地发现,基于理想的光滑的纳米孔(类似于100nm的传统认知,有机富含物体的气体输送能力(类似于1nm的滑动长度)将被传统认知的2个数量级极大地估称(类似于100nm滑动长度)。

著录项

  • 来源
  • 作者单位

    Univ Sci &

    Technol China CAS Ctr Excellence Complex Syst Mech Dept Modern Mech CAS Key Lab Mech Behav &

    Design Mat Hefei 230027 Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Complex Syst Mech Dept Modern Mech CAS Key Lab Mech Behav &

    Design Mat Hefei 230027 Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Complex Syst Mech Dept Modern Mech CAS Key Lab Mech Behav &

    Design Mat Hefei 230027 Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Complex Syst Mech Dept Modern Mech CAS Key Lab Mech Behav &

    Design Mat Hefei 230027 Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Complex Syst Mech Dept Modern Mech CAS Key Lab Mech Behav &

    Design Mat Hefei 230027 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号